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In 1965, generalising and specifying a former result of Weil, Narasimhan and Seshadri [20]
established a bijective correspondence between the set of equivalence classes of irreducible unitary
representations of the fundamental group of a compact Riemann surface X of genus ≥ 2, and the
set of isomorphism classes of degree 0 stable vector bundles on X. The correspondence was further
extended to any complex projective smooth variety by Donaldson [9]. The analogue for general
linear representations is due to Simpson, following works by Corlette and Donaldson ; in order to
obtain a correspondence of the same type than the one by Narasimhan and Seshadri, we need to
add an extra structure to the vector bundle. It’s the notion of Higgs bundle, introduced first by
Hitchin for algebraic curves. If X is a scheme, E an OX -module and A an OX -algebra, an A -Higgs
module with coefficients in E is a pair (M , θ) made of an A -module M and an A -linear morphism
θ : M → M ⊗OX

E such that θ ∧ θ = 0. When X is a complex projective smooth variety, which
is the case considered by Simpson, one exclusively considers OX -Higgs bundles with coefficients in
Ω1
X/C ; we will simply call them Higgs bundles. But we need later to consider more general Higgs

modules.
Simpson’s main result [24, 25, 26, 27] establishes equivalences of categories between the cate-

gory of (finite dimensional complex) linear representations of the fundamental group of a complex
smooth projective variety X, the category of vector bundles with integrable connections on X and
the category of semi-stable Higgs bundles on X with vanishing Chern classes (cf. [19]).

Simpson’s results and subsequent developments have led since few years to the quest of a p-adic
analogue. The most advanced approach at the present stage is due to Faltings [12]. It generalises
former results by Tate, Sen and Fontaine, and relies on his theory of almost-étale extensions [11].
It is also a continuation of his works on p-adic Hodge theory, specially those establishing the
existence of Hodge-Tate decompositions [10]. Once achieved, the p-adic Simpson correspondence
should naturally give the best Hodge-Tate type statements in p-adic Hodge theory. At the present
stage, Faltings construction appears to be satisfactory only for curves and, even in this case, many
fundamental questions remain open.

Meanwhile, Deninger and Werner [7, 8, 6] developed a theory of parallel transport for vec-
tor bundles over p-adic curves, providing an analogue of the classical theory of Narasimhan and
Seshadri.

The summer school at Mainz is an introduction to these p-adic theories, with a particular
emphasis on Faltings’ approach. There will be also few lectures on related topics in p-adic Hodge
theory and non-abelian Hodge theory in characteristic p.

Faltings’ approach

Let K be a complete discrete valuation field of characteristic 0, with perfect residue field k
of characteristic p > 0, K an algebraic closure of K. We denote by OK the valuation ring of
K, by OK the integral closure of OK in K, by OC the p-adic separated completion of OK and
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by C the field of fractions of OC . Let X be a proper smooth geometrically connected curve over
K, x a geometric point of XK . Faltings constructs a fully faithful functor from the category
of p-adic representations of π1(XK , x) to the category of (OXC

)-Higgs bundles with coefficients
in Ω1

X/K(−1). This functor is in fact defined on a strictly larger category than that of p-adic
representations of π1(XK , x), namely the category of generalised representations of π1(XK , x), and
it induces then an equivalence of categories between this new category and that of (OXC

)-Higgs
bundles with coefficients in Ω1

X/K(−1). Faltings shows that Higgs modules associated to “true”
p-adic representations of π1(XK , x) are semi-stables of slope zero. It is expected that all slope zero
semi-stable Higgs modules can be obtained in this way. This statement would correspond to the
most difficult part of Simpson’s result in the complex case.

As usually in his work in p-adic Hodge theory, Faltings proceeds by glueing local constructions
on certain affine open subsets of an integral model of X on which he has a certain control and
that he qualifies by small. The local aspect of the theory is in fact developed for schemes of any
dimension.

Small representations. The typical example of a small affine scheme considered by Faltings
is an affine scheme Spec(R), étale over the torus Gdm,OK

= Spec(OK [T±1
1 , . . . , T±1

d ]) and having
integral geometric fibres over Spec(OK). The fundamental group ∆ of Spec(RK) (relatively to a
geometric generic point) can be explicitly described as follows. Let F be the fraction field of R, F a

an algebraic closure of F containing K, F the union of all finite extensions L of F contained in F a
such that the integral closure of R in L is étale over Spec(RK), R the integral closure of R in F
and R1 = R ⊗OK

OK . Then ∆ is the Galois group of F over F ⊗K K. In this setting, generalised

representations of ∆ are continuous semi-linear representations of ∆ on projective R̂-modules of
finite type (where for any Zp-module M , we denote M̂ its p-adic separated completion).

Faltings constructs generalised representations from certain Higgs modules. More precisely, let
(M, θ) be a R̂1-Higgs module with coefficients in Ω1

R/OK
(−1) such that the underlying R̂1-module is

free of finite type and that θ is divisible by p2α for a rational number α > 1
p−1 ; such a Higgs module

is called small. Faltings associates to (M, θ) a p-adically continuous semi-linear representation ϕ of
∆ with values inM⊗

R̂1
R̂. The generalised representation thus obtained is small in the sense that it

admits a R̂-basis of elements that are invariant modulo p2αM⊗
R̂1
R̂. As a consequence of his purity

theorem for almost étale extensions, Faltings proves that this construction yields an equivalence of
categories between the category of small generalised representations of ∆ and that of small R̂1-Higgs
module with coefficients in Ω1

R/OK
(−1). It is the corner stone of the p-adic Simpson correspondence.

The correspondence is moreover compatible with the natural cohomological functors : up to torsion,
the continuous cohomology of the group ∆ with coefficients in M ⊗

R̂1
R̂ is isomorphic to the

cohomology of the Koszul complex of (M, θ) (also called the Dolbeault complex of (M, θ)).
Restricting to curves, Faltings develops also the notions of small Higgs modules and small ge-

neralised representations with rational coefficients. He obtains again an equivalence of categories.
These results are more generally true for small affine schemes endowed with appropriate log struc-
tures.

The most crucial point in this construction, aside from the purity theorem, is the control of its
degree of canonicity. In fact, Faltings gives two constructions, the most useful and better suited
for globalisation depends on the data of a deformation of the small affine scheme over a certain
infinitesimal thickening A2(OK) of OC formerly defined by Fontaine. Inspired by this construction,
but also by the work of Ogus and Vologodsky on an analogue of Simpson’s correspondence in
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characteristic p, Abbes and Gros [2] develop another approach to p-adic Simpson correspondence
that generalises Faltings’ approach and that clarifies the relation with Hyodo’s work on Hodge-Tate
local systems [17].

Glueing. The correspondence between small generalised representations and small Higgs modules
described above can be extended for any scheme X over OK endowed with an appropriate loga-
rithmic structure, if we are given a logarithmic deformation of X ⊗OK

OC over A2(OK). For this
purpose, Faltings uses a topos that he introduced for the proof of the comparison theorems in p-adic
Hodge theory [11]. It turns out that one needs a slightly different version, namely the co-vanishing
topos, which is a variant of oriented products of topos defined by Deligne [3, 18].

Descent. It remains to remove the assumption of smallness. Faltings describes only the case of
curves. To simplify the exposition, let’s consider a proper semi-stable curve X over OK and fix
a logarithmic deformation of X ⊗OK

OC over A2(OK). Starting from of a general (OXC
)-Higgs

module (E, θ) with coefficients in Ω1
X/OK

(−1), Faltings shows that, after a finite extension of K,
one can always find a proper morphism f : Y → X such that Y is a semi-stable curve over OK , fK
is a Galois covering and the inverse image f∗(E, θ) is small. To this Higgs module is henceforth
associated a small representation M on Y , once fixed a deformation of Y ⊗OK

OC over A2(OK)
(which is always possible). It should be then sufficient to descend M . But a priori, there is no
natural descent data on M . To produce such a data, Faltings twists f∗(E, θ) by tensor product with
an invertible module L . This new module remains small, and the small corresponding generalised
representation is naturally endowed with a descent data. So, it descends toX producing the sought-
after functor. The need of twisting the inverse image of Higgs modules is related to the fact that f
does not necessarily lift to deformations over A2(OK). The obstruction for the existence of such a
lift intervenes in the definition of L . One also needs in the construction to choose an exponential
map on the multiplicative group. Faltings finally shows that one obtains an equivalence of categories
between the category of (OXC

)-Higgs modules (E, θ) with coefficients in Ω1
X/OK

(−1) and that of
generalised representations on X with rational coefficients.

Deninger and Werner’s approach

The theory of Deninger and Werner equips pss-vector bundles E of slope zero on smooth projec-
tive curves X over p-adic fields with a functorial parallel transport along “étale paths”. Restricted
to closed paths, one obtains representations of the fundamental group on the fibres of the vector
bundle. Here pss stands for “potentially strongly semi-stable reduction”, a somewhat technical no-
tion. The pss-bundles of slope zero on curves form neutral Tannakian categories which are stable
under pullback by finite morphisms. Every pss-bundle is semi-stable and the main open question
is whether the converse holds. If one views a pss-bundle as being equipped with the zero Higgs
field, then the associated representation of the fundamental group on a fibre corresponds to the
inverse of Faltings’ construction. However the parallel transport between different fibres provides
a stronger structure. Other topics of interest :

– A comparison of the reduction of the p-adic representation attached to (a model) of E with
the representation of the Nori fundamental group (of the special fibre) corresponding to
the reduction of E.

– For pss-bundles of non-zero slope, the construction of a corresponding p-adic representation
of a certain central extension of the fundamental group.
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Reading suggestions for young participants

Beyond the classical theories of étale fundamental groups [16] and local fields [23], the prerequi-
sites for young participants who would like to follow the summer school are on the one hand, the
arithmetic theory of p-adic Galois representations as in [15], and on the other hand, the semi-stable
reduction theorem for curves [1]. Further readings on p-adic Hodge theory may be useful [10, 11, 14].
For Scholze’s lectures [22], one can consult the video of his lectures at IHÉS on Perfectoid Spaces
and the Weight-Monodromy Conjecture (http ://www.ihes.fr/∼abbes/CAGA/scholze.html).
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