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Massless diagrams in quantum field theory often, yet not invariably,
evaluate to polylogarithms. With massive propagators, elliptic in-
tegrals appear as early as two loops. They are not to be feared,
but rather welcomed, since elliptic integrals have amazingly fast
numerical evaluations. In the first talk, I shall consider some fairly
well-known appearances of elliptic integrals in QFT. In the second,
I shall move on to diagrams that evaluate to products of elliptic
integrals, which pave the way for more general evaluations, as the
L-functions of modular forms at integers inside Dirichlet’s critical
strip, which likewise have very fast evaluations.
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1 Two-loop two-point function

The two-loop diagram, with scalar propagators, leads to an integral which we normalize
as follows:

I(q2) ≡ − q
2

π4

∫
d4l

∫
d4k P1(l)P2(l − q)P3(l − k)P4(k)P5(k − q) (1)

where Pi(l) ≡ (l2 −m2
i + iε)−1. The function (1) is analytic in the q2-plane cut along the

positive real axis, with the lowest branchpoint at

s0 = Min( [m1 +m2]
2 , [m4 +m5]

2 , [m2 +m3 +m4]
2 , [m1 +m3 +m5]

2 )

It vanishes at the origin (unless all the masses vanish) and is bounded at infinity, since
I(−∞) = 6ζ(3). The discontinuity across the cut is given by

σ(w2) ≡ 1

π
Im I(w2 + iε)

=
{

Θ(w −m1 −m2)σa(w
2) + (1↔ 4, 2↔ 5)

}
+
{

Θ(w −m2 −m3 −m4)σb(w
2) + (1↔ 2, 4↔ 5)

}
where σa,b correspond to two-particle and 3-particle cuts.

The contribution σa, with a two-particle cut, involves a form factor that can in turn be
evaluated dispersively by a two-particle cut (provided there is no anomalous threshold).
This yields an inverse hyperbolic tangent in the discontinuity of the form factor, after
integration over the momentum transfer in the scattering process 1 + 2→ 4 + 5, resulting
in

σa(w
2) = −

∫ ∞
m4+m5

dx
4x

x2 − w2

∆(w2,m2
1,m

2
2)

∆(x2,m2
1,m

2
2)
T (x2,m2

1,m
2
2,m

2
3,m

2
4,m

2
5) (2)
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where the principal value is to be taken and

∆(a, b, c) ≡
{
a2 + b2 + c2 − 2(ab+ bc+ ca)

} 1
2

T (s, a, b, c, d, e) ≡ tanh−1
(

∆(s, a, b)∆(s, d, e)

s2 − s(a+ b− 2c+ d+ e) + (a− b)(d− e)

)

To evaluate the contribution σb, with a 3-paerticle cut, we must integrate over the Dalitz
plot for the process w → m2 + m3 + m4. The integration over the invariant mass in
the 2+3 channel also gives a tanh−1 function, which must then be integrated over the
invariant mass in the 3+4 channel, giving

σb(w
2) =

∫ w−m2

m3+m4

dx
4x

x2 −m2
1

T (x2, w2,m2
2,m

2
5,m

2
4,m

2
3) (3)

The tanh−1 functions can now be removed from each of the integrands of eqs (2,3) by tak-
ing the derivative of σ, which is sufficient to evaluate the diagram (1) from the dispersion
relation

I(q2) = −
∫ ∞
s0

ds σ′(s)

{
log

(
1− q2

s

)
− log

(
1− q2

s0

)}
(4)

where the second logarithm may be dropped if σ(s0) = 0 (as is the case when s0 = 0).

The derivative of σa of eq (2) may be evaluated using

∂

∂w

(
4x

x2 − w2

∆(w2,m2
1,m

2
2)

∆(x2,m2
1,m

2
2)

)
=

∂

∂x

(
4w

w2 − x2
∆(x2,m2

1,m
2
2)

∆(w2,m2
1,m

2
2)

)

3



2 Three-loop massive bubble diagrams

There are 10 distinct colourings of the tetrahedron by mass, illustrated in Fig. 2. The
massive lines in V2A and V2N are adjacent and non-adjacent, respectively; in the dual
cases, V4A and V4N , it is the massless lines that are adjacent and non-adjacent; in cases
V3T , V3S and V3L, the massive lines form a triangle, star and line, and hence the massless
lines form a star, triangle and line.

Fig 1: Symmetries of the tetrahedron
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Fig 2: Colourings of the tetrahedron by mass (denoted by a blob)
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Defining the finite two-point function (now with space-like p2)

I(r1 . . . r5; p
2/m2) :=

p2

π4

∫
d4k

∫
d4l P1(k)P2(p+ k)P3(k − l)P4(l)P5(p+ l) (5)

in 4 dimensions, we obtain

V (r1 . . . r5, 0)− V (r1 . . . r5, 1) =
∫ ∞
0

dx I(r1 . . . r5;x)
{

1

x
− 1

x+ 1

}
+O(ε) (6)

for the difference of vacuum diagrams with a massless and massive sixth propagator.

Suppressing the parameters r1 . . . r5, temporarily, we exploit the dispersion relation

I(x) =
∫ ∞
s0

ds σ(s)
{

1

s+ x
− 1

s

}
(7)

where −2πiσ(s) = I(−s+ i0)− I(−s− i0) is the discontinuity across the cut [−∞,−s0]
on the negative axis. Integration by parts then gives

I(x) =
∫ ∞
s0

ds σ′(s)
{
− log

(
1 +

x

s

)
+ log

(
1 +

x

s0

)}
(8)

where the constant term in the logarithmic weight function may be dropped if σ(s0) = 0,
as occurs when s0 = 0. As x→∞, we obtain the universal asymptotic value

6ζ(3) = I(∞) =
∫ ∞
s0

ds σ′(s) {log(s)− log(s0)} (9)

with the log(s0) term dropped when s0 = 0. The finite difference in (6) is obtained
from (8) as ∫ ∞

0
dx I(x)

{
1

x
− 1

x+ 1

}
=
∫ ∞
s0

ds σ′(s) {L2(s)− L2(s0)} (10)
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with a dilogarithmic weight function

L2(s) :=
∫ ∞
0

dx

x(x+ 1)
log

(
1 + x

1 + x/s

)
= Li2(1− 1/s) = −1

2
log2(s)− Li2(1− s) (11)

that is chosen to satisfy L2(1) = 1, thus enabling one to drop L2(s0) for s0 = 0 and s0 = 1,
which covers all the cases with N ≤ 3 massive particles in the two-point function, and
hence N + 1 ≤ 4 massive particles in vacuum diagrams.

We now prove that the two terms in the weight function (11) can be separated to yield
the finite parts of the vacuum diagrams combined in (6), as follows:

F (r1 . . . r5, 0) = 1
2

∫ ∞
s0

ds σ′(r1 . . . r5; s)
{

log2(s)− log2(s0)
}

(12)

F (r1 . . . r5, 1) = −
∫ ∞
s0

ds σ′(r1 . . . r5; s) {Li2(1− s)− Li2(1− s0)} (13)

with constant terms in the weight functions that are inert when s0 = 0 and when s0 = 1.
The proof uses the representation

I(x) = 6ζ(3) +
∫ ∞
s0

ds σ′(s) {− log(x+ s) + log(x+ s0)} (14)

in which the asymptotic value (9) is subtracted. Then one obtains

∫ ∞
0

dx
I(∞)− I(x)

x+ 1
= −

∫ ∞
s0

ds σ′(s) {Li2(1− s)− Li2(1− s0)} (15)
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There are 13 distinct cases of the two-point function (5) with at least one massive particle.
We denote the spectral densities by

σ1(s) := σ(1, 0, 0, 0, 0; s)

σ3(s) := σ(0, 0, 1, 0, 0; s)

σ12(s) := σ(1, 1, 0, 0, 0; s)

σ13(s) := σ(1, 0, 1, 0, 0; s)

σ14(s) := σ(1, 0, 0, 1, 0; s)

σ15(s) := σ(1, 0, 0, 0, 1; s)

σ12(s) := σ(0, 0, 1, 1, 1; s)

σ13(s) := σ(0, 1, 0, 1, 1; s)

σ14(s) := σ(0, 1, 1, 0, 1; s)

σ15(s) := σ(0, 1, 1, 1, 0; s)

σ1(s) := σ(0, 1, 1, 1, 1; s)

σ3(s) := σ(1, 1, 0, 1, 1; s)

σ(s) := σ(1, 1, 1, 1, 1; s)

where the subscripts of σmassive indicate the massive lines, while those of σmassless show the
massless lines.

Since only σ′15, σ
′
1 and σ′ involve an elliptic integral, there is a systematic polylog route

to all finite parts, save that of the totally massive case, V6.
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Table 1: Integral to diagram dictionary

density σ1 σ3 σ12 σ13 σ14 σ15 σ12 σ13 σ14 σ15 σ1 σ3 σ
integral (12) V1 V1 V2A V2A V2A V2N V3T V3L V3S V3L V4A V4N V5
integral (13) V2A V2N V3S V3L V3T V3L V4A V4A V4A V4N V5 V5 V6

Specializing the analysis I to cases with r2j = rj, we obtain

σ′(r1 . . . r5; s) =
{
σ′a(r1 . . . r5; s) Θ

(
s− (r1 + r2)

2
)

+ (1↔ 4, 2↔ 5)
}

+
{
σ′b(r1 . . . r5; s) Θ

(
s− (r2 + r3 + r4)

2
)

+ (1↔ 2, 4↔ 5)
}

σ′a(r1 . . . r5; s) := 2<
∫ ∞
(r4+r5)2

dx
T (x, r1, r2, r3, r4, r5)

∆(s, r1, r2)

∂

∂x

(
∆(x, r1, r2)

x− s+ i0

)
(16)

σ′b(r1 . . . r5; s) := 2<
∫ (
√
s−r2)2

(r3+r4)2
dx

∂

∂s

(
T (x, s, r2, r5, r4, r3)

x− r1 + i0

)
(17)

T (s, a, b, c, d, e) := arctanh

(
∆(s, a, b)∆(s, d, e)

x2 − x(a+ b− 2c+ d+ e) + (a− b)(d− e)

)
(18)

∆(a, b, c) :=
√
a2 + b2 + c2 − 2ab− 2bc− 2ca (19)

with integration by parts in (16) giving a logarithmic result, in all cases, and differenti-
ation in (17) giving a logarithmic result when r1r3r5 = r2r3r4 = 0, i.e. when there is no
intermediate state with 3 massive particles.
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3 The totally massive case

We were able to hand 9 cases by methods that avoided intermediate states with 3 massive
particles. Now there is no option, since

F6 = −
∫ ∞
4

ds σ′(s) Li2(1− s) (20)

involves intermediate states with two and three massive particles in

σ′(s) = σ′a(s) Θ(s− 4) + σ′b(s) Θ(s− 9) . (21)

We may, however, simplify matters by separating these contributions in

F6 − F5 =
∫ ∞
4

ds σ′(s) Li2(1− 1/s) = Fa + Fb (22)

Fa :=
∫ ∞
4

ds σ′a(s) {Li2(1− 1/s)− ζ(2)} (23)

Fb :=
∫ ∞
9

ds σ′b(s) {Li2(1− 1/s)− ζ(2)} (24)

where F5 may be evaluated without encountering elliptic integrals.

The two-particle cut gives a logarithm in

σ′a(s) =
2

s− 3

arccosh(s/2− 1)− 2π√
3s(s− 4)

 (25)
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while the three-particle cut gives the elliptic1 integral

σ′b(s) = −2
∫ (
√
s−1)2

4

dx

x− 1

∆(x, 1, 1)

∆(x, s, 1)

x+ s− 1

∆2(x, s, 1) + xs
. (26)

At large s, contributions (25,26) are each O(log(s)/s), while their sum is O(log(s)/s2).
The integrals (23,24) converge separately, thanks to the ζ(2) in their weight functions, to
which the combination (22) is blind.

It appears that we need to integrate the product of a dilog and an elliptic integral. To
avoid this, we may we reverse the order of integration Setting x = 1/u2 ∈ [4,∞] in (26),
which now becomes the outer integration, and s = (1/u+ v)(1/u+ 1/v) ∈ [(1/u+ 1)2,∞]
in the inner, we then integrate by parts on v ∈ [0, 1] to convert the dilog to a product of
logs, with the result

Fb = 2
∫ 1

2

0
du

(
dA(u)

du

)∫ 1

0
dv

(
∂B(u, v)

∂v

)
C(u, v)D(u, v) (27)

A(u) := log

(
u2

1− u2

)
(28)

B(u, v) := log

(
(1 + uv)(u+ v)

u+ v + uv2

)
(29)

C(u, v) := log

(
(1 + uv)(u+ v)

u2v

)
(30)

D(u, v) := log

(
1 + 2uv + v2 + (1− v2)

√
1− 4u2

1 + 2uv + v2 − (1− v2)
√

1− 4u2

)
(31)

1I am told that Källén was disappointed to find that the two-loop electron propagator involves an
elliptic integral, unlike the simpler photon propagator.
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which establishes that Fb is the integral of a trilogarithm.

The nag routine d01fcf is notably efficient at evaluating rectangular double integrals in
double-precision fortran, which was ample to to discover the remarkable relation

F6 = F3S + F4N − F2N = 4
(
Cl22(π/3) + 4ζ(4) + 2ζ(3, 1)

)
(32)

This corresponds to a direct relation between diagrams

V6 + V2N = V3S + V4N +O(ε) (33)

verified to 15 digits. It stands as testament to the oft remarked fact that results in
quantum field theory have a simplicity that tends to increase with the labour expended.
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4 Massive bananas

4.1 Schwinger’s bananas

Let A be the diagonal N × N matrix with entries Ai,j = δi,jαi. Let U be the column
vector of length N with unit entries, Ui = 1. Then B = UŨ is the N×N matrix with unit
entries, Bi,j = 1. The banana diagram with N + 1 edges of unit mass, in two space-time
dimensions, may be evaluated by Schwinger’s trick as a multiple of the N -dimensional
integral

V N+1 =
∫
αi>0

dα1 . . . dαN
Det(A+B)(Tr(A) + 1)

(34)

where

Det(A+B) =
N∑
i=0

1

αi

N∏
j=0

αj

is the first Symanzik polynomial, with α0 = 1 fixed by momentum conservation, and the
second Symanzik polynomial

Tr(A) + 1 =
N∑
i=0

αi

results from the fact that the N + 1 edges are propagators with unit mass.

4.2 Bessels’s bananas

We may also evaluate banana diagrams in x-space, since the two-dimensional Fourier
transform of the p-space Euclidean propagator 1/(p2 +m2), with p2 = p20 + p21, yields the

12



Bessel function K0(mx), with x2 = x20 + x21. The normalization in (34) corresponds to

V N+1 = 2N
∫ ∞
0

[K0(t)]
N+1t dt (35)

which differs by a power of 2 from the Bessel moments that I studied with Bailey, Borwein
and Glasser [1].

Hence I but a bar over V and use the subscript N + 1 to indicate the number of Bessel
functions.

4.3 Known bananas

It is proven that [1]

V 1 = 1 (36)

V 2 = 1 (37)

V 3 = 3L−3(2) (38)

V 4 = 7ζ(3) (39)

where

L−3(s) =
∑
n≥0

(
1

(3n+ 1)s
− 1

(3n+ 2)s

)

is the Dirichlet L function with conductor −3.

The zero-loop evaluation (36) merely checks our normalization.
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The one-loop evaluation

V 2 =
∫ ∞
0

dα1

(α1 + 1)2
= 1

follows neatly from (34), since with N = 1 we have Det(A+B) = Tr(A) + 1 = α1 + 1.

I shall now use the letters {a, b, c, . . .} for the Schwinger parameters {α1, α2, α3, . . .}.

4.4 Three-edge banana and sixth root of unity

At two loops, the Schwinger method gives the banana diagram with 3 edges as

V 3 =
∫ ∞
0

∫ ∞
0

da db

(ab+ a+ b)(a+ b+ 1)
.

To proceed we may take partial fractions with respect to b. Then

a2 + a+ 1

(ab+ a+ b)(a+ b+ 1)
=

a+ 1

ab+ a+ b
− 1

a+ b+ 1
=

∂

∂b
log

(
ab+ a+ b

a+ b+ 1

)

enables integration over b. Hence we obtain

V 3 =
∫ ∞
0

G(a) da

a2 + a+ 1
(40)

with contributions to
G(a) = log(1 + a) + log(1 + 1/a) (41)
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at b =∞ and b = 0. It is apparent from (40) that the sixth root of unity λ = (1 + i
√

3)/2
is implicated, since a2 + a + 1 = (a + λ)(a + λ), where λ = (1 − i

√
3)/2 = 1 − λ is the

conjugate root. Working out the corresponding dilogarithms we obtain

V 3 =
4√
3
=Li2(λ) = 3L−3(2)

in agreement with the well known result (38).

4.5 Four-edge banana and ζ(3)

To evaluate

V 4 =
∫ ∞
0

∫ ∞
0

∫ ∞
0

da db dc

(abc+ ab+ bc+ ca)(a+ b+ c+ 1)

we take partial fractions with respect to c and then integrate over c, to obtain

V 4 =
∫ ∞
0

∫ ∞
0

L(a, b) da db

(a+ 1)(b+ 1)(a+ b)

with

L(a, b) = log

(
(ab+ a+ b)(a+ b+ 1)

ab

)
.

Hence with

F (a) =
∫ ∞
0

(a− 1)L(a, b) db

(b+ 1)(a+ b)

we have

V 4 =
∫ ∞
0

F (a) da

a2 − 1
=
∫ 1

0

(F (a)− F (1/a)) da

a2 − 1
. (42)
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I shall need only the derivative of F (a). Let

K(a, b) =
b L(a, b)

a+ b
+ log(ab+ a+ b)− 2 log(a+ b+ 1).

Then, by construction,

∂

∂b
K(a, b) = a

∂

∂a

(
(a− 1)L(a, b)

(b+ 1)(a+ b)

)
and hence

a
d

da
F (a) = K(a,∞)−K(a, 0) = 2G(a)

where G(a) was given in (41). We now integrate (42) by parts, to obtain

V 4 =
∫ 1

0

da

a
log

(
1 + a

1− a

)
(G(a) +G(1/a))

and use Nielsen’s evaluations

−
∫ 1

0

da

a
log(1− a) log(1 + a) =

5

8
ζ(3)

−
∫ 1

0

da

a
log(a) log(1 + a) =

3

4
ζ(3)∫ 1

0

da

a
log2(1 + a) =

1

4
ζ(3)∫ 1

0

da

a
log(a) log(1− a) = ζ(3)

to obtain

V 4 =
(

4× 5

8
+ 2× 3

4
+ 4× 1

4
+ 2

)
ζ(3) = 7ζ(3)

in agreement with the previously known result (39).
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4.6 Unknown banana

The next diagram has 5 edges and hence 4 loops. After an easy first integration, we obtain

V 5 =
∫ ∞
0

∫ ∞
0

∫ ∞
0

M(a, b, c) da db dc

(ab+ a+ b)c2 + (ab+ a+ b)(a+ b)c+ (a+ b)ab

with

M(a, b, c) = log(a+ b+ c+ 1) + log
(

1 +
1

a
+

1

b
+

1

c

)
.

But then integration over c will produce complicated dilogarithms with arguments involv-
ing the square root of the discriminant

D(a, b) = (ab+ a+ b)(a+ b)(ab(a+ b) + (a− b)2)

of the quadratic in c. The result will have the form

V 5 =
∫ ∞
0

∫ ∞
0

L2(a, b)da db√
D(a, b)

with undisclosed dilogs in L2(a, b). Integration by parts, to reduce the dilogs to logs,
would require us to introduce an elliptic function, since D(a, b) is a quartic in b.

We know nothing about the number theory of V 5. Its value is known to 1000 decimal
places.
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5 Cut bananas

For N > 2 we may cut an edge in V N and set the two external half edges on the unit
mass shell, which is at p2 = −1. I call the result SN . It has N − 1 internal edges and
hence N − 2 loops. Thus V 3 and S4 correspond to the two-loop diagrams

&%
'$ss
V 3

&%
'$ss
S4

with the “sunrise” diagram S4 obtained by cutting an edge of V 4.

5.1 Schwinger’s cut bananas

At N loops, the integral over Schwinger parameters is

SN+2 =
∫
αi>0

dα1 . . . dαN

Det(A+B)Tr(A) + ŨCU
. (43)

where C is the adjoint of A+B, with

(A+B)C = Det(A+B)I

where I is the unit matrix with Ii,j = δi,j. The denominator in (43) is the second Symanzik
polynomial.
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5.2 Bessels’s cut bananas

In x-space, cutting an edge and putting it on the mass shell corresponds to replacing one
instance of the Bessel function K0(t) by I0(t), to obtain

SN+2 = 2N
∫ ∞
0

I0(t)[K0(t)]
N+1t dt (44)

at N loops. Note that S2 is divergent, since

I0(t) =
∑
k≥0

(
tk

2kk!

)2

grows exponentially, with

I0(t) =
exp(t)√

2πt

(
1 +

1

8t
+O(1/t2)

)
as t→∞, while

K0(t) =

√
π

2t
exp(−t)

(
1− 1

8t
+O(1/t2)

)
is exponentially damped.

5.3 Known cut bananas

It is proven that [1]

S3 = 2L−3(1) =
2π

3
√

3
(45)
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S4 = Li2(1)− Li2(−1) =
π2

4
(46)

and it is conjectured that [1]

S5
?
=

1

30
√

5
Γ
(

1

15

)
Γ
(

2

15

)
Γ
(

4

15

)
Γ
(

8

15

)
(47)

which holds to at least 1000 decimal places.

5.4 Cut banana with sixth root of unity

The Schwinger formula (43) at one loop gives

S3 =
∫ ∞
0

da

a2 + a+ 1
=

log(λ)− log(λ)

λ− λ
=

2 arctan(
√

3)√
3

=
2π

3
√

3

as claimed in (45).

5.5 Cut banana with π2

At two loops, we have

S4 =
∫ ∞
0

∫ ∞
0

da db

(a+ b)(a+ 1)(b+ 1)

with a convenient factorization of the second Symanzik polynomial. Hence

S4 =
∫ ∞
0

log(a) da

a2 − 1
= 2

∫ 1

0

log(a) da

a2 − 1
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yields dilogs at square roots of unity, namely

S4 = Li2(1)− Li2(−1) =
π2

6
+
π2

12
=
π2

4

as claimed in (46).

5.6 Cut banana at the 15th singular value

At three loops, we have

S5 =
∫ ∞
0

∫ ∞
0

∫ ∞
0

da db dc

P (a, b, c)

where
P (a, b, c) = (abc+ ab+ bc+ ca)(a+ b+ c) + (ab+ bc+ ca)

with the final term, (ab + bc + ca), resulting from the adjoint matrix. Grouping powers
of c, we see that

P (a, b, c) = (ab+ a+ b)c2 + (ab+ a+ b)(a+ b+ 1)c+ (a+ b+ 1)ab

yields a discriminant

∆(a, b) = (ab+ a+ b)(a+ b+ 1)((ab+ a+ b)(a+ b+ 1)− 4ab)

and the integral over c gives

S5 =
∫ ∞
0

∫ ∞
0

da db√
∆(a, b)

log

(
1 +X(a, b)

1−X(a, b)

)
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with

X(a, b) =

√
1− 4ab

(ab+ a+ b)(a+ b+ 1)
.

Conjecture (47) was stimulated by a proven result for

T 5 ≡ 4
∫ ∞
0

[I0(t)]
2[K0(t)]

3t dt =
∫ ∞
0

∫ ∞
0

da db√
∆(a, b)

namely

T 5 =

√
3

120π
Γ
(

1

15

)
Γ
(

2

15

)
Γ
(

4

15

)
Γ
(

8

15

)
(48)

obtained at the 15th singular value, by diamond mining [1].

Numerical evaluation suggested that

S5

T 5

?
=

4π√
15

and this has been confirmed at 1000-digit precision. Yet it remains to be proved that

∫ ∞
0

∫ ∞
0

da db√
∆(a, b)

(
log

(
1 +X(a, b)

1−X(a, b)

)
− 4π√

15

)

vanishes. It has been shown that its magnitude is smaller than 10−1000.
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6 L-series of a K3 surface

For s > 2 let

L(s) =
∏
p

1

1− Ap

ps
+
(
p
15

)
p2

p2s

where
(
·
15

)
is a Kronecker symbol and the product is over all primes p, with integers

A3 = −3,

A5 = 5,

Ap = 0, for
(
p

15

)
= −1,

Ap = 2x2 + 2xy − 7y2, for x2 + xy + 4y2 = p ≡ 1, 4 (mod 15), (49)

Ap = x2 + 8xy + y2, for 2x2 + xy + 2y2 = p ≡ 2, 8 (mod 15), (50)

with pairs of integers (x, y) defined, for x > 0, by the quadratic forms in (49,50).

As shown by Peters, Top and van der Vlugt [2], the L-series

L(s) =
∑
n>0

An
ns

is generated by the weight-3 modular form

f3(q) = η(q)η(q3)η(q5)η(q15)R(q) =
∑
n>0

Anq
n (51)
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where

η(q)

q1/24
=

∏
j>0

(1− qj) =
∑
n∈Z

(−1)nqn(3n+1)/2, (52)

R(q) =
∑

m,n∈Z
qm

2+mn+4n2

. (53)

Note that A1 = 1, since 1 + 3 + 5 + 15 = 24. If q = pr is a prime power, then

Apq = ApAq −
(
p

15

)
p2Aq/p.

If n =
∏
j qj, with prime powers qj = p

rj
j , then An =

∏
j Aqj . Thus (49,50) suffice to

compute An and are easily programmed using the qfbsolve command of Pari-GP.

I now describe how I was able to evaluate 20000 good digits of the conditionally convergent
series L(2) =

∑
n>0An/n

2. Let

Λ(s) =
Γ(s)

cs
L(s), with c =

2π√
15
.

Then [2] gives the functional equation Λ(s) = Λ(3− s), which may be used to extend the
Mellin transform

Λ(s) =
∑
n>0

An

∫ ∞
0

dx

x
xs exp(−cnx) (54)

throughout the complex s-plane, as follows

Λ(s) =
∑
n>0

An

(
Γ(s, cnλ)

(cn)s
+

Γ(3− s, cn/λ)

(cn)3−s

)
(55)
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where

Γ(s, y) =
∫ ∞
y

dx

x
xs exp(−x)

is the incomplete Γ function and λ ≥ 0 is an arbitrary real parameter. To establish (55),
I remark that it agrees with (54), at λ = 0, and that its derivative with respect to λ
vanishes by virtue of the inversion symmetry

M(λ) ≡ λ3/2
∑
n>0

An exp(−cnλ) = M(1/λ).

Optimal convergence is achieved at λ = 1, where

Λ(s) =
∑
n>0

An

∫ ∞
1

dx

x

(
xs + x3−s

)
exp

(
−2πnx√

15

)
(56)

makes the relation Λ(s) = Λ(3 − s) explicit. Zeros on the critical line <s = 3/2 occur
when

Λ(3/2 + is0) = 2
∑
n>0

An

∫ ∞
1

dx x1/2 cos(s0 log(x)) exp

(
−2πnx√

15

)
vanishes. I have computed 100 good digits of the first zero, obtaining

s0 = 4.8419258142299625880455337112471754483999458406347

669395095360856334816804741135372158525188377525005 . . .

At s = 2, the integral in (56) is elementary and we have dramatically improved conver-
gence for

L(2) ≡
∑
n>0

An
n2

=
∑
n>0

An
n2

(
1 +

4πn√
15

)
exp

(
− 2πn√

15

)
(57)
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from which I obtained more than 20000 good digits in less than a minute, by computing
the first 30000 terms, with the aid of (49,50). The result is consistent with the conjecture

3L(2)
?
= T 5 (58)

≡ 4
∫ ∞
0

[I0(t)]
2[K0(t)]

3t dt (59)

=
∫ ∞
0

∫ ∞
0

da db√
(ab+ a+ b)(a+ b+ 1)((ab+ a+ b)(a+ b+ 1)− 4ab)

(60)

=
π2

8

(√
15−

√
3
)(

1 + 2
∑
n>0

exp
(
−
√

15πn2
))4

(61)

=

√
3

120π
Γ
(

1

15

)
Γ
(

2

15

)
Γ
(

4

15

)
Γ
(

8

15

)
(62)

?
=

√
15

4π
S5 (63)

where T 5 is defined in (59) as a Bessel moment, with a proven integral representation over
Schwinger parameters in (60), a proven evaluation at the 15th singular value in (61), a
proven reduction to Γ values in (62) and a conjectural relation to S5 in (63).

Unfortunately, I did not succeed in relating V 5 to L(3) and/or L(4).
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7 L-series for 6 Bessel functions

We are interested in relating Bessel moments of the form

V N = 2N−1
∫ ∞
0

[K0(t)]
N t dt, for N > 0, (64)

SN = 2N−2
∫ ∞
0

I0(t)[K0(t)]
N−1t dt, for N > 2, (65)

TN = 2N−3
∫ ∞
0

I20 (t)[K0(t)]
N−2t dt, for N > 4, (66)

UN = 2N−4
∫ ∞
0

I30 (t)[K0(t)]
N−3t dt, for N ≥ 6, (67)

WN = 2N−5
∫ ∞
0

I40 (t)[K0(t)]
N−4t dt, for N ≥ 8, (68)

to L-series derived from modular forms. In [1] it was conjectured that

S5
?
=

4π√
15
T 5 (69)

S6
?
=

4π2

3
U6 (70)

T 8
?
=

18π2

7
W 8 (71)

with a notable appearance of 7 in the denominator on the right hand side of (71).

Francis Brown suggested that the weight-4 modular form

f4(q) =
[
η(q)η(q2)η(q3)η(q6)

]2
=
∑
n>0

A4,nq
n (72)
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of Hulek, Spandaw, van Geemen and van Straten [3] might yield an L-series

L4(s) =
∑
n>0

A4,n

ns
=

1

1 + 21−s
1

1 + 31−s

∏
p>3

1

1− A4,p

ps
+ p3

p2s

with values related to the problem with 6 Bessel functions. Note that A4,1 = 1, since
2(1 + 2 + 3 + 6) = 24.

The Mellin transform

Λ4(s) =
Γ(s)

(2π/
√

6)s
L4(s) =

∑
n>0

A4,n

∫ ∞
0

dx

x
xs exp

(
−2πnx√

6

)

may be analytically continued to give

Λ4(s) =
∑
n>0

A4,n

∫ ∞
1

dx

x

(
xs + x4−s

)
exp

(
−2πnx√

6

)

by virtue of the inversion symmetry

M4(λ) ≡ λ2
∑
n>0

A4,n exp

(
−2πnλ√

6

)
= M4(1/λ)

that gives the reflection symmetry Λ4(s) = Λ4(4− s).
Then, at s = 2 and s = 3, we obtain the very convenient formulas

L4(2) =
∑
n>0

A4,n

n2

(
2 +

4πn√
6

)
exp

(
−2πn√

6

)
(73)

L4(3) =
∑
n>0

A4,n

n3

(
1 +

2πn√
6

+
2π2n2

3

)
exp

(
−2πn√

6

)
(74)
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without resort to incomplete Γ functions that entail exponential integrals. By this means,
I was able to compute 20000 good digits of (73,74) in less than 100 seconds. Then the
conjectural evaluations

S6
?
= 48ζ(2)L4(2) (75)

T 6
?
= 12L4(3) (76)

U6
?
= 6L4(2) (77)

were discovered and checked at 1000-digit precision.

I remark that Francis Brown had expected a result of form (76), for T 6, with an un-
known rational coefficient, which I here evaluate as 12. The existence of a relation of the
form (77), for U6, had not been predicted, since I had been unable to provide an expres-
sion for this Bessel moment as an integral over Schwinger parameters of an algebraic or
polylogarithmic function. However, it was quite natural to guess that a reduction of T 6

to L4(3) would be accompanied by a reduction of U6 to L4(2). Then the reduction of
S6 to ζ(2)L4(2) follows from conjecture (70), which I had already checked at 1000-digit
precision in [1].

8 L-series for 8 Bessel functions

Next, Francis Brown provided the first 100 Fourier coefficients of a weight-6 modular form
f6(q) =

∑
n>0A6,nq

n, whose L-series

L6(s) =
∑
n>0

A6,n

ns
=

1

1− 22−s
1

1 + 32−s

∏
p>3

1

1− A6,p

ps
+ p5

p2s
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was expected to yield values related to the problem with 8 Bessel functions. His data may
be condensed down to the values

-66, 176, -60, -658, -414, 956, 600, 5574, -3592, -8458, 19194, 13316, -19680,

-31266, 26340, -31090, -16804, 6120, -25558, 74408, -6468, -32742, 166082

of A6,p for the primes p = 5, 7, . . . , 97.

From this I inferred that the explicit modular form is given by

f6(q) = g(q)g(q2) (78)

g(q) =
[
η(q)η(q3)

]2 ∑
m,n∈Z

qm
2+mn+n2

(79)

with f6(q)/f4(q) given by the θ function of the strongly 6-modular lattice [4] indexed by
http://www2.research.att.com/˜njas/lattices/QQF.4.g.html with expansion coef-
ficients in entry A125510 of Neil Sloane’s On-Line Encyclopedia of Integer Sequences.

Proceeding along the lines of the previous section, I accelerated the convergence of

Λ6(s) =
Γ(s)

(2π/
√

6)s
L6(s) =

∑
n>0

A6,n

∫ ∞
0

dx

x
xs exp

(
−2πnx√

6

)

by using the functional relation Λ6(s) = Λ6(6− s) to obtain

Λ6(s) =
∑
n>0

A6,n

∫ ∞
1

dx

x

(
xs + x6−s

)
exp

(
−2πnx√

6

)

and hence the convenient formulas

L6(3) =
∑
n>0

A6,n

n3

(
2 +

4πn√
6

+
2π2n2

3

)
exp

(
−2πn√

6

)
, (80)
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L6(4) =
∑
n>0

A6,n

n4

(
1 +

2πn√
6

+
4π2n2

9
+

4π3n3

9
√

6

)
exp

(
−2πn√

6

)
, (81)

L6(5) =
∑
n>0

A6,n

n5

(
1 +

2πn√
6

+
π2n2

3
+

2π3n3

9
√

6
+
π4n4

27

)
exp

(
−2πn√

6

)
. (82)

The resulting fits

T 8
?
= 216L6(5) (83)

U8
?
= 36L6(4) (84)

W 8
?
= 8L6(3) (85)

are rather satisfying. They leave the conjectural relation

L6(5)
?
=

4

7
ζ(2)L6(3) (86)

as a restatement of the notable conjecture (71) given in [1].

Thanks to the explicit formula (78) for the weight-6 modular form, conjecture (86) has
now been checked to 20000-digit precision.
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