The Hopf algebra of dissection polylogarithms

Clément Dupont

Institut de Mathématiques de Jussieu

cdupont@math.jussieu.fr

March 20, 2013

Clément Dupont (IMJ)

Dissection polylogarithms

March 20, 2013 1 / 30

Periods and motives

Quantum Field Theory

Combinatorial Hopf algebras

Clément Dupont (IMJ)

Dissection polylogarithms

March 20, 2013 2 / 30

Combinatorial Hopf algebras

(日) (同) (三) (三)

Clément Dupont (IMJ)

Clément Dupont (IMJ)

March 20, 2013 2 / 30

- 2 Dissection polylogarithms
- 3 Motivic dissection polylogarithms

4 The motivic coproduct of pairs of simplices

• • • • • • • • • • • •

A combinatorial Hopf algebra on dissection diagrams

- 2 Dissection polylogarithms
- 3 Motivic dissection polylogarithms

The motivic coproduct of pairs of simplices

< ロ > < 同 > < 三 > < 三

Overview

We will define a graded Hopf algebra over \mathbb{Q} :

$$\mathcal{D} = \bigoplus_{n \ge 0} \mathcal{D}_n$$

which is

- connected: $\mathcal{D}_0 = \mathbb{Q}$
- commutative
- not cocommutative.

Overview

We will define a graded Hopf algebra over \mathbb{Q} :

$$\mathcal{D} = \bigoplus_{n \ge 0} \mathcal{D}_n$$

which is

- connected: $\mathcal{D}_0 = \mathbb{Q}$
- commutative
- not cocommutative.

 $\ensuremath{\mathcal{D}}$ is the free commutative algebra on the set of dissection diagrams.

3

Dissection diagram of degree n

We start with a polygon with n + 1 vertices, with a special vertex called the *root*.

Dissection diagram of degree n

We start with a polygon with n + 1 vertices, with a special vertex called the *root*.

We draw n chords between the vertices so that

• the chords do not intersect each other.

Dissection diagram of degree n

We start with a polygon with n + 1 vertices, with a special vertex called the *root*.

We draw n chords between the vertices so that

- the chords do not intersect each other.
- the graph formed by the chords has no loop.

Dissection diagram of degree n

We start with a polygon with n + 1 vertices, with a special vertex called the *root*.

We draw n chords between the vertices so that

- the chords do not intersect each other.
- the graph formed by the chords has no loop.

Hence the chords form a rooted tree.

 \mathcal{D} is the free commutative algebra on the set of dissection diagrams. It is graded: $\mathcal{D} = \bigoplus_{n \ge 0} \mathcal{D}_n$.

3

 \mathcal{D} is the free commutative algebra on the set of dissection diagrams. It is graded: $\mathcal{D} = \bigoplus_{n \ge 0} \mathcal{D}_n$.

$$\mathcal{D}_0 = \mathbb{Q} = \mathbb{Q} \bigcirc$$

3

 \mathcal{D} is the free commutative algebra on the set of dissection diagrams. It is graded: $\mathcal{D} = \bigoplus_{n \ge 0} \mathcal{D}_n$.

3

イロト イポト イヨト イヨト

 \mathcal{D} is the free commutative algebra on the set of dissection diagrams. It is graded: $\mathcal{D} = \bigoplus_{n \ge 0} \mathcal{D}_n$.

Definition

The coproduct $\Delta: \mathcal{D} \to \mathcal{D} \otimes \mathcal{D}$ is defined, for D a dissection diagram, by the formula

$$\Delta(D) = \sum_{S \subset D} S \otimes (D/S)$$

Definition

The coproduct $\Delta: \mathcal{D} \to \mathcal{D} \otimes \mathcal{D}$ is defined, for D a dissection diagram, by the formula

$$\Delta(D) = \sum_{S \subset D} S \otimes (D/S)$$

• Δ is graded, with components $\Delta_{k,n-k} : \mathcal{D}_n \to \mathcal{D}_k \otimes \mathcal{D}_{n-k}$.

Definition

The coproduct $\Delta: \mathcal{D} \to \mathcal{D} \otimes \mathcal{D}$ is defined, for D a dissection diagram, by the formula

$$\Delta(D) = \sum_{S \subset D} S \otimes (D/S)$$

- Δ is graded, with components $\Delta_{k,n-k} : \mathcal{D}_n \to \mathcal{D}_k \otimes \mathcal{D}_{n-k}$.
- S = subset of the chords of the dissection.

Definition

The coproduct $\Delta: \mathcal{D} \to \mathcal{D} \otimes \mathcal{D}$ is defined, for D a dissection diagram, by the formula

$$\Delta(D) = \sum_{S \subset D} S \otimes (D/S)$$

- Δ is graded, with components $\Delta_{k,n-k} : \mathcal{D}_n \to \mathcal{D}_k \otimes \mathcal{D}_{n-k}$.
- S = subset of the chords of the dissection.
- D/S is obtained by contracting the chords from S → product of dissection diagrams.

$$\Delta(D) = \sum_{S \subset D} S \otimes (D/S)$$

for $S = \{1, 4\}$.

Clément Dupont (IMJ)

æ

$$\Delta(D) = \sum_{S \subset D} S \otimes (D/S)$$

for $S = \{1, 4\}$.

3

$$\Delta(D) = \sum_{S \subset D} S \otimes (D/S)$$

Clément Dupont (IMJ)

March 20, 2013 9 / 30

We decorate the chords of the dissection with complex numbers $a_i \in \mathbb{C}$ and the edges of the polygons with complex numbers $b_i \in \mathbb{C}$.

We decorate the chords of the dissection with complex numbers $a_i \in \mathbb{C}$ and the edges of the polygons with complex numbers $b_i \in \mathbb{C}$.

We decorate the chords of the dissection with complex numbers $a_i \in \mathbb{C}$ and the edges of the polygons with complex numbers $b_i \in \mathbb{C}$.

We decorate the chords of the dissection with complex numbers $a_i \in \mathbb{C}$ and the edges of the polygons with complex numbers $b_i \in \mathbb{C}$.

We decorate the chords of the dissection with complex numbers $a_i \in \mathbb{C}$ and the edges of the polygons with complex numbers $b_i \in \mathbb{C}$.

We get a graded Hopf algebra \mathcal{D}^{dec} with a forgetful morphism $\mathcal{D}^{dec} \twoheadrightarrow \mathcal{D}$.

Clément Dupont (IMJ)

1 A combinatorial Hopf algebra on dissection diagrams

2 Dissection polylogarithms

3 Motivic dissection polylogarithms

The motivic coproduct of pairs of simplices

< ロ > < 同 > < 三 > < 三

Overview

For each dissection diagram D we will define an integral

$$I(D) = \int_{\Delta_D} \omega_D$$

seen as a multi-valued function of the decorations a_i and b_j .

- 32

イロト イポト イヨト イヨト

Overview

For each dissection diagram D we will define an integral

$$I(D) = \int_{\Delta_D} \omega_D$$

seen as a multi-valued function of the decorations a_i and b_j .

Example

$$I\left(b_{0} \underbrace{b_{1}}_{b_{1}}^{1} b_{1}\right) = \int_{-b_{0}}^{b_{1}} \frac{dt_{1}}{t_{1} - a_{1}} = \log\left(\frac{a_{1} - b_{1}}{a_{1} + b_{0}}\right)$$

Clément Dupont (IMJ)

3

Generic decorations

Assumption on the decorations

We assume that the decorations a_i and b_j are **generic**: for every simple cycle in the total graph of the dissection, the (oriented) sum of the decorations is non zero.

Generic decorations

Assumption on the decorations

We assume that the decorations a_i and b_j are **generic**: for every simple cycle in the total graph of the dissection, the (oriented) sum of the decorations is non zero.

Example

$$I\left(b_{0} \underbrace{b_{1}}_{b_{1}}^{1} b_{1}\right) = \int_{-b_{0}}^{b_{1}} \frac{dt}{t - a_{1}} = \log\left(\frac{a_{1} - b_{1}}{a_{1} + b_{0}}\right)$$

Genericity assumption: $a_1 + b_0 \neq 0$, $a_1 - b_1 \neq 0$, $b_0 + b_1 \neq 0$.

イロト イポト イヨト イヨト

Generic decorations

Assumption on the decorations

We assume that the decorations a_i and b_j are **generic**: for every simple cycle in the total graph of the dissection, the (oriented) sum of the decorations is non zero.

Example

$$I\left(b_{0} \underbrace{b_{1}}_{a_{1}} b_{1}\right) = \int_{-b_{0}}^{b_{1}} \frac{dt}{t - a_{1}} = \log\left(\frac{a_{1} - b_{1}}{a_{1} + b_{0}}\right)$$

Genericity assumption: $a_1 + b_0 \neq 0$, $a_1 - b_1 \neq 0$, $b_0 + b_1 \neq 0$.

This genericity assumption will ensure that all the integrals I(D) are convergent.

Clément Dupont (IMJ)

Dissection polylogarithms

March 20, 2013 13 / 30
Definition

For a dissection diagram D of degree n, we set

$$\omega_{D} = \operatorname{dlog}(f_{1}) \wedge \cdots \wedge \operatorname{dlog}(f_{n}) = \frac{df_{1}}{f_{1}} \wedge \cdots \wedge \frac{df_{n}}{f_{n}}$$

3

(日) (同) (三) (三)

Definition

For a dissection diagram D of degree n, we set

$$\omega_{D} = \operatorname{dlog}(f_{1}) \wedge \cdots \wedge \operatorname{dlog}(f_{n}) = \frac{df_{1}}{f_{1}} \wedge \cdots \wedge \frac{df_{n}}{f_{n}}$$

3

(日) (周) (三) (三)

Definition

For a dissection diagram D of degree n, we set

3

(日) (同) (三) (三)

Definition

For a dissection diagram D of degree n, we set

$$\omega_D = \operatorname{dlog}(f_1) \wedge \cdots \wedge \operatorname{dlog}(f_n) = \frac{df_1}{f_1} \wedge \cdots \wedge \frac{df_n}{f_n}$$

$$i \quad f_i = t_i - t_j - a_i \qquad i \quad a_i \qquad f_i = t_i - a_i$$

. .

イロト イポト イヨト イヨト

We set $L_i = \{f_i = 0\} \subset \mathbb{C}^n$ hyperplane, so that $L = L_1 \cup \cdots \cup L_n$ is the divisor of the poles of ω_D .

Definition

For a dissection diagram D of degree n, we set

$$\omega_D = \operatorname{dlog}(f_1) \wedge \cdots \wedge \operatorname{dlog}(f_n) = \frac{df_1}{f_1} \wedge \cdots \wedge \frac{df_n}{f_n}$$

$$i \quad f_i = t_i - t_j - a_i \qquad i \quad a_i \qquad f_i = t_i - a_i$$

. .

We set $L_i = \{f_i = 0\} \subset \mathbb{C}^n$ hyperplane, so that $L = L_1 \cup \cdots \cup L_n$ is the divisor of the poles of ω_D .

$$D = \frac{1}{a_1} + \frac{a_2}{a_1} + 2 \quad \rightsquigarrow \quad \omega_D = \frac{dt_1 \wedge dt_2}{(t_1 - a_1)(t_2 - t_1 - a_2)}$$

Clément Dupont (IMJ)

The integration simplex Δ_D

Definition

For a dissection diagram *D* of degree *n*, we define hyperplanes M_i in \mathbb{C}^n :

$$M_0 = \{0 = t_1 + b_0\}$$

$$M_j = \{t_j = t_{j+1} + b_j\} \text{ for } j = 1, \cdots, n-1$$

$$M_n = \{t_n = b_n\}$$

Let Δ_D be any topological simplex inside $\mathbb{C}^n \setminus L$ such that $\partial_j \Delta_D \subset M_j$ for all $j = 0, 1, \dots, n$.

The integration simplex Δ_D

Definition

For a dissection diagram *D* of degree *n*, we define hyperplanes M_i in \mathbb{C}^n :

$$M_0 = \{0 = t_1 + b_0\}$$

$$M_j = \{t_j = t_{j+1} + b_j\} \text{ for } j = 1, \cdots, n-1$$

$$M_n = \{t_n = b_n\}$$

Let Δ_D be any topological simplex inside $\mathbb{C}^n \setminus L$ such that $\partial_j \Delta_D \subset M_j$ for all $j = 0, 1, \dots, n$.

We set $M = M_0 \cup M_1 \cup \cdots \cup M_n \subset \mathbb{C}^n$ the (Zariski closure of the) boundary of Δ_D .

イロト イポト イヨト イヨト

The integration simplex Δ_D

Definition

For a dissection diagram *D* of degree *n*, we define hyperplanes M_i in \mathbb{C}^n :

$$M_0 = \{0 = t_1 + b_0\}$$

$$M_j = \{t_j = t_{j+1} + b_j\} \text{ for } j = 1, \cdots, n-1$$

$$M_n = \{t_n = b_n\}$$

Let Δ_D be any topological simplex inside $\mathbb{C}^n \setminus L$ such that $\partial_j \Delta_D \subset M_j$ for all $j = 0, 1, \dots, n$.

We set $M = M_0 \cup M_1 \cup \cdots \cup M_n \subset \mathbb{C}^n$ the (Zariski closure of the) boundary of Δ_D .

The genericity assumption implies that $L \cup M$ is a normal crossing divisor inside \mathbb{C}^n , so that Δ_D always exists.

Clément Dupont (IMJ)

Dissection polylogarithms

The dissection polylogarithm attached to a dissection diagram D is the integral $I(D) = \int_{\Delta_D} \omega_D$ seen as a multi-valued function of the decorations a_i and b_j .

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

The dissection polylogarithm attached to a dissection diagram D is the integral $I(D) = \int_{\Delta_D} \omega_D$ seen as a multi-valued function of the decorations a_i and b_j .

The special case of (generic) iterated integrals

The dissection polylogarithm attached to a dissection diagram D is the integral $I(D) = \int_{\Delta_D} \omega_D$ seen as a multi-valued function of the decorations a_i and b_j .

The special case of (generic) iterated integrals Genericity condition: $u_i \neq u_j$ for $i \neq j$.

The dissection polylogarithm attached to a dissection diagram D is the integral $I(D) = \int_{\Delta_D} \omega_D$ seen as a multi-valued function of the decorations a_i and b_j .

The special case of (generic) iterated integrals Genericity condition: $u_i \neq u_j$ for $i \neq j$.

$$I(D) = I(u_0; u_1, \cdots, u_n; u_{n+1}) \\ = \int_{\Delta(u_0, u_{n+1})} \frac{dt_1}{t_1 - u_1} \cdots \frac{dt_n}{t_n - u_n}$$

The dissection polylogarithm attached to a dissection diagram D is the integral $I(D) = \int_{\Delta_D} \omega_D$ seen as a multi-valued function of the decorations a_i and b_j .

The special case of (generic) iterated integrals Genericity condition: $u_i \neq u_j$ for $i \neq j$.

$$I(D) = I(u_0; u_1, \cdots, u_n; u_{n+1}) \\ = \int_{\Delta(u_0, u_{n+1})} \frac{dt_1}{t_1 - u_1} \cdots \frac{dt_n}{t_n - u_n}$$

Non-generic example

$$Li_{2}(t) = \int_{0 \le x \le y \le t} \frac{dxdy}{(1-x)y} = -I(0; 1, 0; t)$$

 $D = \begin{array}{c} 3 & 0 \\ 0 \\ 0 \\ -u_0 \\ -u_0 \\ -u_0 \\ -u_0 \\ -u_{n+1} \end{array} \right)$

Theorem (D.)

For every dissection diagram D of degree n, the dissection polylogarithm I(D) is a linear combination with \mathbb{Z} -coefficients of (generic) iterated integrals $I(u_0; u_1, \dots, u_n; u_{n+1})$ where the u_k 's are linear combinations with \mathbb{Z} -coefficients of the decorations a_i and b_i of D.

イロト イポト イヨト イヨト

Theorem (D.)

For every dissection diagram D of degree n, the dissection polylogarithm I(D) is a linear combination with \mathbb{Z} -coefficients of (generic) iterated integrals $I(u_0; u_1, \dots, u_n; u_{n+1})$ where the u_k 's are linear combinations with \mathbb{Z} -coefficients of the decorations a_i and b_i of D.

イロト イポト イヨト イヨト

Theorem (D.)

For every dissection diagram D of degree n, the dissection polylogarithm I(D) is a linear combination with \mathbb{Z} -coefficients of (generic) iterated integrals $I(u_0; u_1, \dots, u_n; u_{n+1})$ where the u_k 's are linear combinations with \mathbb{Z} -coefficients of the decorations a_i and b_j of D.

• One can describe an algorithm that reduces *I*(*D*) to iterated integrals. But there is no *canonical* algorithm.

Theorem (D.)

For every dissection diagram D of degree n, the dissection polylogarithm I(D) is a linear combination with \mathbb{Z} -coefficients of (generic) iterated integrals $I(u_0; u_1, \dots, u_n; u_{n+1})$ where the u_k 's are linear combinations with \mathbb{Z} -coefficients of the decorations a_i and b_j of D.

- One can describe an algorithm that reduces *I*(*D*) to iterated integrals. But there is no *canonical* algorithm.
- The number of iterated integrals that appear is between 1 and n!.

Clément Dupont (IMJ)

Dissection polylogarithms

1 A combinatorial Hopf algebra on dissection diagrams

- 2 Dissection polylogarithms
- 3 Motivic dissection polylogarithms

4 The motivic coproduct of pairs of simplices

< ロ > < 同 > < 三 > < 三

We will replace the dissection polylogarithms I(D) by motivic versions

 $I^{\mathcal{H}}(D)\in\mathcal{H}$ the *motivic* Hopf algebra

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

We will replace the dissection polylogarithms I(D) by motivic versions

 $I^{\mathcal{H}}(D) \in \mathcal{H}$ the *motivic* Hopf algebra

The new feature is a coproduct $\Delta(I^{\mathcal{H}}(D)) = ?$

Clément Dupont (IMJ)

- a mixed Tate motive over a number field F
- a mixed Hodge-Tate structure

• • • •

3

(日) (周) (三) (三)

- a mixed Tate motive over a number field F
- a mixed Hodge-Tate structure

• • • •

3

(日) (周) (三) (三)

• a mixed Tate motive over a number field F

```
• a mixed Hodge-Tate structure
```

o . . .

The constructive point of view

The cohomology groups of some algebraic varieties are motives. Example: $H^1(\mathbb{C}^*) = \mathbb{Q}(-1)$ the Tate motive.

イロト イポト イヨト イヨト

- a mixed Tate motive over a number field F
- a mixed Hodge-Tate structure

o . . .

The constructive point of view

The cohomology groups of some algebraic varieties are motives. Example: $\mu_{1}^{1}(\mathbb{C}^{*}) = \mathbb{O}(-1)$ the Tete metric

 $H^1(\mathbb{C}^*) = \mathbb{Q}(-1)$ the Tate motive.

The tannakian point of view

The category of motives is equivalent to the category of finite-dimensional representations of a certain group G(the motivic Galois group).

- a mixed Tate motive over a number field F
- a mixed Hodge-Tate structure

• • • •

The constructive point of view

The cohomology groups of some algebraic varieties are motives. Example: $H^1(\mathbb{C}^*) = \mathbb{Q}(-1)$ the Tate motive.

The tannakian point of view

The category of motives is equivalent to the category of finite-dimensional representations of a certain group G(the motivic Galois group).

Reconstructing the functions on G

If V is a representation of G, $v \in V$, $\varphi \in V^{\vee}$, then (V, v, φ) is a function on G:

$$g\mapsto \varphi(g.v)$$

Reminder

For *D* a dissection diagram, $I(D) = \int_{\Delta_D} \omega_D$. $L \subset \mathbb{C}^n$ the poles of ω_D , $M \subset \mathbb{C}^n$ the boundary of Δ_D .

イロト イポト イヨト イヨト

Reminder

For *D* a dissection diagram, $I(D) = \int_{\Delta_D} \omega_D$. $L \subset \mathbb{C}^n$ the poles of ω_D , $M \subset \mathbb{C}^n$ the boundary of Δ_D .

• $H := H^n(\mathbb{C}^n \setminus L, M \setminus M \cap L)$

イロト 不得下 イヨト イヨト 二日

Reminder

For *D* a dissection diagram, $I(D) = \int_{\Delta_D} \omega_D$. $L \subset \mathbb{C}^n$ the poles of ω_D , $M \subset \mathbb{C}^n$ the boundary of Δ_D .

•
$$H := H^n(\mathbb{C}^n \setminus L, M \setminus M \cap L)$$

• $\operatorname{gr}_{2n}^W H \cong H^n(\mathbb{C}^n \setminus L) \ni [\omega_D]$

イロト イポト イヨト イヨト

Reminder

For *D* a dissection diagram, $I(D) = \int_{\Delta_D} \omega_D$. $L \subset \mathbb{C}^n$ the poles of ω_D , $M \subset \mathbb{C}^n$ the boundary of Δ_D .

•
$$H := H^n(\mathbb{C}^n \setminus L, M \setminus M \cap L)$$

•
$$\operatorname{gr}_{2n}^{W} H \cong H^n(\mathbb{C}^n \setminus L) \ni [\omega_D]$$

•
$$(\operatorname{gr}_0^W H)^{\vee} \cong H_n(\mathbb{C}^n, M) \ni [\Delta_D]$$

イロト イポト イヨト イヨト

Reminder

For *D* a dissection diagram, $I(D) = \int_{\Delta_D} \omega_D$. $L \subset \mathbb{C}^n$ the poles of ω_D , $M \subset \mathbb{C}^n$ the boundary of Δ_D .

•
$$H := H^n(\mathbb{C}^n \setminus L, M \setminus M \cap L)$$

•
$$\operatorname{gr}_{2n}^{W} H \cong H^n(\mathbb{C}^n \setminus L) \ni [\omega_D]$$

•
$$(\operatorname{gr}_0^W H)^{\vee} \cong H_n(\mathbb{C}^n, M) \ni [\Delta_D]$$

Definition (motivic dissection polylogarithm)

 $I^{\mathcal{H}}(D) := (H, [\omega_D], [\Delta_D]) \in \mathcal{H}$ the algebra of functions on the motivic Galois group G.

イロト イポト イヨト イヨト 二日

Reminder

Clémen

For *D* a dissection diagram, $I(D) = \int_{\Delta_D} \omega_D$. $L \subset \mathbb{C}^n$ the poles of ω_D , $M \subset \mathbb{C}^n$ the boundary of Δ_D .

•
$$H := H^n(\mathbb{C}^n \setminus L, M \setminus M \cap L)$$

•
$$\operatorname{gr}_{2n}^{W} H \cong H^n(\mathbb{C}^n \setminus L) \ni [\omega_D]$$

•
$$(\operatorname{gr}_0^W H)^{\vee} \cong H_n(\mathbb{C}^n, M) \ni [\Delta_D]$$

Definition (motivic dissection polylogarithm)

 $I^{\mathcal{H}}(D) := (H, [\omega_D], [\Delta_D]) \in \mathcal{H}$ the algebra of functions on the motivic Galois group G.

$$\mathcal{H} = \bigoplus_{n \ge 0} \mathcal{H}_n \qquad \text{If } D \text{ has degree } n \text{ then } I^{\mathcal{H}}(D) \in \mathcal{H}_n$$

The main theorem

$\Delta(I^{\mathcal{H}}(D)) \longleftrightarrow$ action of the motivic Galois group on I(D).

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

The main theorem

 $\Delta(I^{\mathcal{H}}(D)) \longleftrightarrow$ action of the motivic Galois group on I(D).

Theorem (D.)

The coproduct of the motivic dissection polylogarithms is given by the formula

$$\Delta(I^{\mathcal{H}}(D)) = \sum_{S \subset D} I^{\mathcal{H}}(S) \otimes I^{\mathcal{H}}(D/S)$$

In other words, the map

$$\mathcal{D}^{dec}
ightarrow \mathcal{H} \ , \ D \mapsto I^{\mathcal{H}}(D)$$

is a morphism of (graded) Hopf algebras.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Special case 1: iterated integrals

Genericity condition: $u_i \neq u_i$ for $i \neq j$. $I(u_0; u_1, \cdots, u_n; u_{n+1}) = \int_{\Delta(u_0, u_{n+1})} \frac{dt_1}{t_1 - u_1} \cdots \frac{dt_n}{t_n - u_n} \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$

< < p>< < p>

Special case 1: iterated integrals

Genericity condition: $u_i \neq u_j$ for $i \neq j$. $I(u_0; u_1, \dots, u_n; u_{n+1}) = \int_{\Delta(u_0, u_{n+1})} \frac{dt_1}{t_1 - u_1} \cdots \frac{dt_n}{t_n - u_n}$ Definition (Motivic iterated integrals)

 $I^{\mathcal{H}}(u_0; u_1, \cdots, u_n; u_{n+1}) \in \mathcal{H}_n$

くロト (過) (語) (語)

Special case 1: iterated integrals

Genericity condition: $u_i \neq u_j$ for $i \neq j$. $I(u_0; u_1, \cdots, u_n; u_{n+1}) = \int_{\Delta(u_0, u_{n+1})} \frac{dt_1}{t_1 - u_1} \cdots \frac{dt_n}{t_n - u_n}$

Definition (Motivic iterated integrals)

$$I^{\mathcal{H}}(u_0; u_1, \cdots, u_n; u_{n+1}) \in \mathcal{H}_n$$

Proposition (Goncharov, 2001)

$$\Delta(I^{\mathcal{H}}(u_0; u_1, \cdots, u_n; u_{n+1})) = \sum_{\substack{0 \le k \le n \\ 0 = s_0 < s_1 < \cdots < s_k < s_{k+1} = n+1}}$$

$$I^{\mathcal{H}}(u_{0}; u_{s_{1}}, \cdots, u_{s_{k}}; u_{n+1}) \otimes \prod_{i=0}^{k} I^{\mathcal{H}}(u_{s_{i}}; u_{s_{i}+1}, \cdots, u_{s_{i+1}-1}; u_{s_{i+1}})$$

Clément Dupont (IMJ

U3

<u>u</u>2
Motivic dissection polylogarithms

Special case 2: path polylogarithms

∃ →

Image: A match a ma

э

Special case 2: path polylogarithms

Definition (Path polylogarithms) $J(a_1, \dots, a_n; b) = \int_{\Delta(0,b)} \frac{dt_1 \cdots dt_n}{(t_1 - a_1)(t_2 - t_1 - a_2) \cdots (t_n - t_{n-1} - a_n)}$

< < p>< < p>

Special case 2: path polylogarithms

Definition (Path polylogarithms) $J(a_1, \dots, a_n; b) = \int_{\Delta(0,b)} \frac{dt_1 \cdots dt_n}{(t_1 - a_1)(t_2 - t_1 - a_2) \cdots (t_n - t_{n-1} - a_n)}$

Definition (Motivic path polylogarithms) $J^{\mathcal{H}}(a_1, \cdots, a_n; b) \in \mathcal{H}_n$

イロト イポト イヨト イヨト 二日

Special case 2: path polylogarithms

Definition (Path polylogarithms) $J(a_1, \dots, a_n; b) = \int_{\Delta(0,b)} \frac{dt_1 \cdots dt_n}{(t_1 - a_1)(t_2 - t_1 - a_2) \cdots (t_n - t_{n-1} - a_n)}$

Definition (Motivic path polylogarithms) $J^{\mathcal{H}}(a_1, \cdots, a_n; b) \in \mathcal{H}_n$

Proposition

$$\Delta(J^{\mathcal{H}}(a_1,\cdots,a_n;b)) = \sum_{S \subset \{1,\cdots,n\}} J^{\mathcal{H}}(a(S);b) \otimes J^{\mathcal{H}}(a(\overline{S});b-a_S)$$

$$(a_S = \sum_{s \in S} a_s)$$

1 A combinatorial Hopf algebra on dissection diagrams

- 2 Dissection polylogarithms
- 3 Motivic dissection polylogarithms

4 The motivic coproduct of pairs of simplices

< ロ > < 同 > < 三 > < 三

D a (decorated) dissection diagram:

3

<ロ> (日) (日) (日) (日) (日)

- D a (decorated) dissection diagram:
 - $L_i = \{f_i = 0\} \subset \mathbb{C}^n$ hyperplanes

イロト 不得 トイヨト イヨト 二日

D a (decorated) dissection diagram:

• $L_i = \{f_i = 0\} \subset \mathbb{C}^n \text{ hyperplanes} \rightarrow \omega_D = \operatorname{dlog}(f_1) \land \cdots \land \operatorname{dlog}(f_n).$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

D a (decorated) dissection diagram:

- $L_i = \{f_i = 0\} \subset \mathbb{C}^n \text{ hyperplanes} \rightarrow \omega_D = \operatorname{dlog}(f_1) \land \cdots \land \operatorname{dlog}(f_n).$
- $M_j \subset \mathbb{C}^n$ hyperplanes

D a (decorated) dissection diagram:

- $L_i = \{f_i = 0\} \subset \mathbb{C}^n \text{ hyperplanes} \rightarrow \omega_D = \operatorname{dlog}(f_1) \land \cdots \land \operatorname{dlog}(f_n).$
- $M_j \subset \mathbb{C}^n$ hyperplanes $\rightsquigarrow \Delta_D$ simplex such that $\partial_j \Delta_D \subset M_j$.

イロト イポト イヨト イヨト 二日

D a (decorated) dissection diagram:

- $L_i = \{f_i = 0\} \subset \mathbb{C}^n \text{ hyperplanes} \rightarrow \omega_D = \operatorname{dlog}(f_1) \land \cdots \land \operatorname{dlog}(f_n).$
- $M_j \subset \mathbb{C}^n$ hyperplanes $\rightsquigarrow \Delta_D$ simplex such that $\partial_j \Delta_D \subset M_j$.

$$\rightsquigarrow I(D) = \int_{\Delta_D} \omega_D$$

イロト イポト イヨト イヨト 二日

D a (decorated) dissection diagram:

- $L_i = \{f_i = 0\} \subset \mathbb{C}^n \text{ hyperplanes} \rightarrow \omega_D = \operatorname{dlog}(f_1) \land \cdots \land \operatorname{dlog}(f_n).$
- $M_j \subset \mathbb{C}^n$ hyperplanes $\rightsquigarrow \Delta_D$ simplex such that $\partial_j \Delta_D \subset M_j$.

$$\rightsquigarrow I(D) = \int_{\Delta_D} \omega_D$$

Motivic dissection polylogarithm:

• $H := H^n(\mathbb{C}^n \setminus L, M \setminus M \cap L)$

D a (decorated) dissection diagram:

- $L_i = \{f_i = 0\} \subset \mathbb{C}^n \text{ hyperplanes} \rightarrow \omega_D = \operatorname{dlog}(f_1) \land \cdots \land \operatorname{dlog}(f_n).$
- $M_j \subset \mathbb{C}^n$ hyperplanes $\rightsquigarrow \Delta_D$ simplex such that $\partial_j \Delta_D \subset M_j$.

$$\rightsquigarrow I(D) = \int_{\Delta_D} \omega_D$$

Motivic dissection polylogarithm:

- $H := H^n(\mathbb{C}^n \setminus L, M \setminus M \cap L)$
- $\operatorname{gr}_{2n}^W H \cong H^n(\mathbb{C}^n \setminus L) \ni [\omega_D]$

D a (decorated) dissection diagram:

- $L_i = \{f_i = 0\} \subset \mathbb{C}^n \text{ hyperplanes} \rightarrow \omega_D = \operatorname{dlog}(f_1) \land \cdots \land \operatorname{dlog}(f_n).$
- $M_j \subset \mathbb{C}^n$ hyperplanes $\rightsquigarrow \Delta_D$ simplex such that $\partial_j \Delta_D \subset M_j$.

$$\rightsquigarrow I(D) = \int_{\Delta_D} \omega_D$$

Motivic dissection polylogarithm:

- $H := H^n(\mathbb{C}^n \setminus L, M \setminus M \cap L)$
- $\operatorname{gr}_{2n}^W H \cong H^n(\mathbb{C}^n \setminus L) \ni [\omega_D]$
- $(\operatorname{gr}_0^W H)^{\vee} \cong H_n(\mathbb{C}^n, M) \ni [\Delta_D]$

D a (decorated) dissection diagram:

- $L_i = \{f_i = 0\} \subset \mathbb{C}^n \text{ hyperplanes} \rightarrow \omega_D = \operatorname{dlog}(f_1) \land \cdots \land \operatorname{dlog}(f_n).$
- $M_j \subset \mathbb{C}^n$ hyperplanes $\rightsquigarrow \Delta_D$ simplex such that $\partial_j \Delta_D \subset M_j$.

$$\rightsquigarrow I(D) = \int_{\Delta_D} \omega_D$$

Motivic dissection polylogarithm:

- $H := H^n(\mathbb{C}^n \setminus L, M \setminus M \cap L)$
- $\operatorname{gr}_{2n}^{W} H \cong H^{n}(\mathbb{C}^{n} \setminus L) \ni [\omega_{D}]$

$$\rightsquigarrow I^{\mathcal{H}}(D) = (H, [\omega_D], [\Delta_D]) \in \mathcal{H}$$

• $(\operatorname{gr}_0^W H)^{\vee} \cong H_n(\mathbb{C}^n, M) \ni [\Delta_D]$

D a (decorated) dissection diagram:

- $L_i = \{f_i = 0\} \subset \mathbb{C}^n \text{ hyperplanes} \rightarrow \omega_D = \operatorname{dlog}(f_1) \land \cdots \land \operatorname{dlog}(f_n).$
- $M_j \subset \mathbb{C}^n$ hyperplanes $\rightsquigarrow \Delta_D$ simplex such that $\partial_j \Delta_D \subset M_j$.

$$\rightsquigarrow I(D) = \int_{\Delta_D} \omega_D$$

Motivic dissection polylogarithm:

- $H := H^n(\mathbb{C}^n \setminus L, M \setminus M \cap L)$
- $\operatorname{gr}_{2n}^W H \cong H^n(\mathbb{C}^n \setminus L) \ni [\omega_D]$

$$\rightsquigarrow I^{\mathcal{H}}(D) = (H, [\omega_D], [\Delta_D]) \in \mathcal{H}$$

•
$$(\operatorname{gr}_0^W H)^{\vee} \cong H_n(\mathbb{C}^n, M) \ni [\Delta_D]$$

Theorem

$$\Delta(I^{\mathcal{H}}(D)) = \sum_{S \subset D} I^{\mathcal{H}}(S) \otimes I^{\mathcal{H}}(D/S)$$

A. A. Beilinson, A. B. Goncharov, V. V. Schechtman, A. N. Varchenko - *Projective geometry and K-theory* (1991).

3

イロト イポト イヨト イヨト

A. A. Beilinson, A. B. Goncharov, V. V. Schechtman, A. N. Varchenko - *Projective geometry and K-theory* (1991).

Pair of simplices $(L; M) = (L_0, \dots, L_n; M_0, \dots, M_n) \subset \mathbb{P}^n(\mathbb{C})$ where the L_i 's and the M_j 's are hyperplanes.

くロト (得) (言) (言)

A. A. Beilinson, A. B. Goncharov, V. V. Schechtman, A. N. Varchenko - *Projective geometry and K-theory* (1991).

Pair of simplices $(L; M) = (L_0, \dots, L_n; M_0, \dots, M_n) \subset \mathbb{P}^n(\mathbb{C})$ where the L_i 's and the M_j 's are hyperplanes.

A. A. Beilinson, A. B. Goncharov, V. V. Schechtman, A. N. Varchenko - *Projective geometry and K-theory* (1991).

Pair of simplices $(L; M) = (L_0, \dots, L_n; M_0, \dots, M_n) \subset \mathbb{P}^n(\mathbb{C})$ where the L_i 's and the M_j 's are hyperplanes.

•
$$L_i = \{f_i = 0\} \rightsquigarrow \omega_L = \operatorname{dlog}(f_1) \land \cdots \land \operatorname{dlog}(f_n)$$

A. A. Beilinson, A. B. Goncharov, V. V. Schechtman, A. N. Varchenko - *Projective geometry and K-theory* (1991).

Pair of simplices $(L; M) = (L_0, \dots, L_n; M_0, \dots, M_n) \subset \mathbb{P}^n(\mathbb{C})$ where the L_i 's and the M_j 's are hyperplanes.

- $L_i = \{f_i = 0\} \rightsquigarrow \omega_L = \operatorname{dlog}(f_1) \land \cdots \land \operatorname{dlog}(f_n)$
- $M \rightsquigarrow \Delta_M$ simplex such that $\partial_j \Delta_M \subset M_j$

A. A. Beilinson, A. B. Goncharov, V. V. Schechtman, A. N. Varchenko - *Projective geometry and K-theory* (1991).

Pair of simplices $(L; M) = (L_0, \dots, L_n; M_0, \dots, M_n) \subset \mathbb{P}^n(\mathbb{C})$ where the L_i 's and the M_j 's are hyperplanes.

- $L_i = \{f_i = 0\} \rightsquigarrow \omega_L = \operatorname{dlog}(f_1) \land \cdots \land \operatorname{dlog}(f_n)$
- $M \rightsquigarrow \Delta_M$ simplex such that $\partial_j \Delta_M \subset M_j$

$$\rightsquigarrow I(L; M) = \int_{\Delta_M} \omega_L$$

•
$$H(L; M) := H^n(\mathbb{P}^n(\mathbb{C}) \setminus L, M \setminus M \cap L)$$

3

・ロト ・四ト ・ヨト ・ヨト

- $H(L; M) := H^n(\mathbb{P}^n(\mathbb{C}) \setminus L, M \setminus M \cap L)$
- $\operatorname{gr}_{2n}^W H(L; M) \cong H^n(\mathbb{C}) \setminus L) \ni [\omega_L]$

イロト 不得下 イヨト イヨト 二日

- $H(L; M) := H^n(\mathbb{P}^n(\mathbb{C}) \setminus L, M \setminus M \cap L)$
- $\operatorname{gr}_{2n}^W H(L; M) \cong H^n(\mathbb{C}) \setminus L) \ni [\omega_L]$
- $(\operatorname{gr}_0^W H(L; M))^{\vee} \cong H_n(\mathbb{P}^n(\mathbb{C}), M) \ni [\Delta_M]$

- $H(L; M) := H^n(\mathbb{P}^n(\mathbb{C}) \setminus L, M \setminus M \cap L)$
- $\operatorname{gr}_{2n}^W H(L; M) \cong H^n(\mathbb{C}) \setminus L) \ni [\omega_L]$
- $(\operatorname{gr}_0^W H(L; M))^{\vee} \cong H_n(\mathbb{P}^n(\mathbb{C}), M) \ni [\Delta_M]$

 $\rightsquigarrow I^{\mathcal{H}}(L; M) = (H(L; M), [\omega_L], [\Delta_M]) \in \mathcal{H} \text{ ("naive guess")}$

•
$$H(L; M) := H^n(\mathbb{C}) \setminus L, M \setminus M \cap L)$$

•
$$\operatorname{gr}_{2n}^W H(L; M) \cong H^n(\mathbb{C}(\mathbb{C}) \setminus L) \ni [\omega_L]$$

•
$$(\operatorname{gr}_0^W H(L; M))^{\vee} \cong H_n(\mathbb{P}^n(\mathbb{C}), M) \ni [\Delta_M]$$

 $\rightsquigarrow I^{\mathcal{H}}(L; M) = (H(L; M), [\omega_L], [\Delta_M]) \in \mathcal{H} \text{ ("naive guess")}$

The elements $I^{\mathcal{H}}(L; M)$ should generate a sub-Hopf algebra of \mathcal{H} .

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

•
$$H(L; M) := H^n(\mathbb{C}) \setminus L, M \setminus M \cap L)$$

•
$$\operatorname{gr}_{2n}^W H(L; M) \cong H^n(\mathbb{C}(\mathbb{C}) \setminus L) \ni [\omega_L]$$

•
$$(\operatorname{gr}_0^W H(L; M))^{\vee} \cong H_n(\mathbb{P}^n(\mathbb{C}), M) \ni [\Delta_M]$$

 $\rightsquigarrow I^{\mathcal{H}}(L; M) = (H(L; M), [\omega_L], [\Delta_M]) \in \mathcal{H} \text{ ("naive guess")}$

The elements $I^{\mathcal{H}}(L; M)$ should generate a sub-Hopf algebra of \mathcal{H} .

Open problem

Prove that it is the case by giving a closed formula for $\Delta(I^{\mathcal{H}}(L; M))$.

イロト イポト イヨト イヨト 二日

•
$$H(L; M) := H^n(\mathbb{C}) \setminus L, M \setminus M \cap L)$$

•
$$\operatorname{gr}_{2n}^W H(L; M) \cong H^n(\mathbb{C}(\mathbb{C}) \setminus L) \ni [\omega_L]$$

• $(\operatorname{gr}_0^W H(L; M))^{\vee} \cong H_n(\mathbb{P}^n(\mathbb{C}), M) \ni [\Delta_M]$

 $\rightsquigarrow I^{\mathcal{H}}(L; M) = (H(L; M), [\omega_L], [\Delta_M]) \in \mathcal{H} \text{ ("naive guess")}$

The elements $I^{\mathcal{H}}(L; M)$ should generate a sub-Hopf algebra of \mathcal{H} .

Open problem

Prove that it is the case by giving a closed formula for $\Delta(I^{\mathcal{H}}(L; M))$.

What is known?

- The low-dimensional cases: $n \leq 3$.
- The generic case: (L; M) in general position in $\mathbb{P}^{n}(\mathbb{C})$.
- The iterated integrals.

The abstract formula for the coproduct

G a group, functions on G: $(V, v, \varphi)(g) = \varphi(g.v)$.

The abstract formula for the coproduct

G a group, functions on G: $(V, v, \varphi)(g) = \varphi(g.v)$.

$$(V, v, \varphi)(gg') = \sum_i (V, b_i, \varphi)(g)(V, v, b_i^{\vee})(g')$$

where (b_i) is a basis of V and (b_i^{\vee}) the dual basis.

The abstract formula for the coproduct

G a group, functions on G: $(V, v, \varphi)(g) = \varphi(g.v)$.

$$(V, v, \varphi)(gg') = \sum_i (V, b_i, \varphi)(g)(V, v, b_i^{\vee})(g')$$

where (b_i) is a basis of V and (b_i^{\vee}) the dual basis. Translated into Hopf algebras:

$$\Delta(V, v, \varphi) = \sum_{i} (V, b_i, \varphi) \otimes (V, v, b_i^{\vee})$$

The abstract formula for the coproduct

G a group, functions on G: $(V, v, \varphi)(g) = \varphi(g.v)$.

$$(V, v, \varphi)(gg') = \sum_i (V, b_i, \varphi)(g)(V, v, b_i^{\vee})(g')$$

where (b_i) is a basis of V and (b_i^{\vee}) the dual basis. Translated into Hopf algebras:

$$\Delta(V, v, \varphi) = \sum_{i} (V, b_i, \varphi) \otimes (V, v, b_i^{\vee})$$

Computing $\Delta(I^{\mathcal{H}}(L; M)) \longleftrightarrow$ finding functorial bases for $\operatorname{gr}_{2k}^{W} H(L; M)$.

A relative Brieskorn-Orlik-Solomon theorem

Theorem (Brieskorn-Orlik-Solomon)

Let $L = L_1 \cup \cdots \cup L_N$ be a union of linear hyperplanes in \mathbb{C}^n . Then we have an isomorphism of graded algebras

$$H^{\bullet}(\mathbb{C}^n \setminus L) \cong \Lambda^{\bullet}(e_1, \cdots, e_N)/\mathcal{R}$$

where \mathcal{R} is generated by the relations:

$$\sum_{i=1}^{k} (-1)^{i} e_{s_{1}} \wedge \cdots \wedge \widehat{e_{s_{i}}} \wedge \cdots \wedge e_{s_{k}} = 0$$

if L_{s_1}, \cdots, L_{s_k} are linearly dependent.

A relative Brieskorn-Orlik-Solomon theorem

Theorem (Brieskorn-Orlik-Solomon)

Let $L = L_1 \cup \cdots \cup L_N$ be a union of linear hyperplanes in \mathbb{C}^n . Then we have an isomorphism of graded algebras

$$H^{\bullet}(\mathbb{C}^n \setminus L) \cong \Lambda^{\bullet}(e_1, \cdots, e_N)/\mathcal{R}$$

where \mathcal{R} is generated by the relations:

$$\sum_{i=1}^{k} (-1)^{i} e_{s_{1}} \wedge \cdots \wedge \widehat{e_{s_{i}}} \wedge \cdots \wedge e_{s_{k}} = 0$$

if L_{s_1}, \cdots, L_{s_k} are linearly dependent.

Theorem (D.)

For $k = 0, \cdots, n$ we have an explicit functorial presentation

 $\operatorname{gr}_{2k}^W H^n(\mathbb{C}^n(\mathbb{C}) \setminus L, M \setminus M \cap L) \cong \Lambda^k(e_0, \cdots, e_n) \otimes \Lambda^{n-k}(f_0, \cdots, f_n) / \mathcal{R}'$