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Abstract

In this note we compute the (uni)versal deformation of two types of mod 3 Galois representations
ρ̄ : Gal(Q3/Q3) → GL2(F3). In the cases considered the (uni)versal ring is obstructed. Our main
result is that the ring is still an integral domain. The result has consequences for the p-adic local
Langlands correspondence: By work of Colmez and Kisin it allows one to deduce that benign
crystalline points are Zariski dense in the universal space for p = 3. Thus the p-adic local Langlands
correspondence [Co2] as well as the result [Ki] have no longer any exceptional cases for p = 3.

1 Introduction

Let p be a prime, let Qp denote the completion of the field of rational numbers Q under the p-adic norm
and let K ⊃ Qp be a finite extension field. For q a power of p denote by Fq the field of q elements and
by Zq the ring of Witt vectors of Fq, so that Zq is the complete discrete valuation ring of characteristic
zero with uniformizer p and residue field Fq. Consider a continuous representation

ρ̄ : GK → GL2(Fq)

of the absolute Galois group GK := Gal(Ksep/K) of K.
To ρ̄ we apply the deformation theory developed by Mazur [Ma]: Let CNLq denote the category of

complete noetherian local Zq-algebras R with residue field Fq. The algebra structure yields a canonical
surjective homomorphism πR : R → Fq of Zq-algebras. Its kernel is the maximal ideal of R which
we denote by mR. For R ∈ CNLq, a lift of ρ̄ to R is a continuous representation ρ : GK → GL2(R)
such that ρ̄ = GL2(πR) ◦ ρ. A deformation is a strict equivalence class of lifts where two lifts are
strictly equivalent if they are in the same conjugacy class under conjugation by matrices in Γ(R) :=
Ker(GL2(πR) : GL2(R) → GL2(Fq)) ⊂ GL2(R). Following Mazur one considers the functor which to
any R in CNLq associates the set of all deformations of ρ̄ to R.

By [Ma] this functor always has a versal hull. The versal hull is a strict equivalence class of a lift
ρv : GK → GL2(Rv) of ρ̄ which is characterized (up to isomorphism) by the following two properties:
(a) any deformation to a ring R is obtained as the composite of ρv with a Zq-algebra homomorphism
Rv → R in CNLq; (b) the composition of ρv with the canonical surjection Rv −→→ Rv/(m2

Rv
, p) is

universal for deformations to Fq[ε]/(ε2). The versal hull is universal if dimFq H
0(GK , ad) = 1; here

ad denotes the adjoint representation of GK on the set of 2 × 2 matrices M2(Fq) over Fq, i.e., the
composite of ρ̄ with the conjugation action of GL2(Fq) on M2(Fq).

In this note we shall explicitly compute the versal deformation rings for two (types of) ρ̄ in the
case where K = Q3, and so from now on we specialize p to 3. For every n ∈ N we fix a primitive n-th
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root of unity ζn ∈ Q3. We define χ3 : GQ3 → Z/(3)∗ ∼= F∗3 as the mod 3 cyclotomic character, so that
gζ3 = ζ

χ3(g)
3 for g ∈ GQ3 . We also define characters ωi : GQ3i → F∗

3i , i = 1, 2, by

σ 7→ ωi(σ) ≡ σ( 3i−1
√

3)
3i−1
√

3
(mod 3 Z3i);

the fraction on the right is a primitive (3i − 1)-th root of unity in Z3i . The characters ωi are totally
and tamely ramified.

We shall study the following two (types of) residual mod 3 Galois representations ρ̄i : Gal(Q3/Q3)→
GL2(F3): By ρ̄1 we denote a representation which is an extension of the trivial character by χ3, so that

ρ̄1 : GQ3 → GL2(Fq) : σ 7→
(
χ3(σ) β(σ)

0 1

)
for some power q of 3; here σ 7→ β(σ) is a continuous 1-cocycle and the set of ρ̄1 up to isomorphism
is in bijection with H1

cont(GQ3 ,F
χ3
q ). If 0 = [β] ∈ H1

cont(GQ3 ,F
χ3
q ) we choose β = 0. From local Tate

duality and the local Euler-Poincaré formula, cf. [Wa, §3], one deduces

dimFq H
1
cont(GQ3 ,F

χ3
q ) = dim Fχ3

q + dimH0
cont(GQ3 ,F

χ3
q ) + dimH0

cont(GQ3 , (F
χ3
q )∗(χ3)) = 1 + 0 + 1 = 2.

By ρ̄2 we denote the induced representation

ρ̄2 := Ind
GQ3
GQ9

ω2
2 : GQ3 → GL2(F3);

we remark that the image of ρ̄2 is a dihedral group of order 8 of which it is known that its irreducible
degree 2 representation on F3 is defined over F3. To have a uniform notation for the coefficient fields
for both ρ̄i, we take q = 3 for the representation ρ̄2.

Let ρi : GQ3 → GL2(Ri) denote the versal hull of ρ̄i. One easily verifies that it is universal if either
i = 2 or if i = 1 and [β] 6= 0 – note that dimH0(GQ3 , ad) = 2 if i = 1 and [β] = 0. The main result of
this article is an explicit computation of Ri which leads to the following result:

Theorem 1.1 The ring Ri is an integral domain. Moreover Ri is a local complete intersection, flat
over Zq and of relative dimension 4 + dimH0(GQ3 , ad).

The proof follows closely that of the main result [Bö, Theorem 2.6]. The new assertion made, in
comparison with [Bö], is that the rings Ri for the two cases at hand are integral domains. This implies
that the Spec(Ri[1/3]) are reduced and irreducible.

By [Ki, Cor. 1.3.6], the ρ̄i considered here are precisely those 2-dimensional representations of
GQ3 over a finite extension of F3 for which Mazur’s deformation functor is obstructed, i.e., for which
H2(GQ3 , ad) 6= 0. Thus Theorem 1.1 holds for the (uni)versal deformation rings of all such resid-
ual representations. Moreover one can easily adapt the (methods of the) present article to study
deformation functors for deformations having a fixed determinant ψ as in [Ki]. The corresponding
(uni)versal deformation ring satisfies all assertions of Theorem 1.1 except that its relative dimension
is 3 + dimH0(GQ3 , ad0).

Since SpecRi[1/3] is irreducible, [Co1, § 6] or [Ki, Cor. 1.3.4] imply that trianguline or benign
crystalline points are Zarisiki dense in it – as well as the analogous result for deformations with a fixed
determinant (note that [Ki, Cor. 2.3.7] only needs cases of the present note in which dimH0(GQ3 , ad0) =
0, i.e., those in which Ri is universal). By this, the p-adic local Langlands correspondence [Co2, in
part. Thme. II.3.3] and the result [Ki, Thms. 0.1 and 0.3] have no longer any exceptional cases for p = 3.
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We now survey the present article. In Section 2 Mazur’s deformation functor for the ρ̄i considered
here is identified as a functor describing sets of equivariant homomorphisms from the pro-3 completion
P of the absolute Galois group of an extension of Q3 determined by ρ̄i to a pro-3 Sylow subgroup of
GL2(R) – the idea to consider functors of equivariant homomorphisms goes back to Boston, e.g. [Bo].
The group P is a Demuškin group which carries an action of Im(ρ̄) modulo its normal 3-Sylow subgroup
U . In Section 3, we recall the main results on such groups.

Compared to the results in [Bö] there are two improvements. In Section 2 the Demuškin group P
arises from an extension of Q3 that is possibly of a smaller degree than in [Bö] or [Bo]. This facilitates
the computations related to ρ̄2. In Section 3 we are able to give an explicit presentation of P in terms
of topological generators and one relation r where on the generators and thus also on r the action of
Im(ρ̄)/U is also given explicitly! For ρ̄1 this was indicated in [Bö, Example 3.7]. For ρ̄2 this is new and
rather simple – but it was not noticed in [Bö]. The explicit form of r will in Sections 4 and 5 allow the
explicit computation of the versal deformations ρi. The Rings Ri are given as the quotient of a power
series ring over Zq by ideals whose generators can in principle be given explicitly. However the actual
generators we find are too complicated to write down. Instead, using a computer algebra package, we
can give truncated power series to sufficient high precision to prove Theorem 1.1.

Acknowledgements: I would like to thank very much P. Colmez for bringing the problem that led
to this note to my attention and moreover to allow me to publish it in present the volume dedicated to
J.-M. Fontaine. The author was supported by a grant of the Deutsche Forschungsgemeinschaft within
the SFB/TR 45.

2 A functor of equivariant homomorphisms

For a field k let ksep denote a fixed separable closure. We define Pk as the pro-3 completion of
Gk := Gal(ksep/k). This is a quotient of Gk by a closed normal subgroup. The fixed field of this
subgroup inside ksep we denote by k(3).

We introduce various extension fields of Q3 inside Q3 and Galois groups – they depend on ρ̄i
but we omit this dependency in the notation. The splitting field of ρ̄ is L := G

Ker(ρ̄i)
Q3

. The group
H := Gal(L/Q3) has a unique 3-Sylow subgroup denoted U – it is trivial for ρ̄2. For ρ̄1, the fixed field
LU is E := Q3(ζ3) and we write G := Gal(E/Q3). Since U is a 3-group one has E(3) = L(3). For ρ̄2,
we define L0 := G

Ker(ad)
Q3

as the splitting field of ad and we set C := Gal(L/L0) and G := Gal(L0/Q3).
For the convenience of the reader, we display the situations for both ρ̄i in the following diagrams:

L(3)

PE

H

L

PL

E

U

Q3

G

for ρ̄1

L · L0(3)

PL0
×C

H

L

PL0

L0

C

Q3

G

for ρ̄2

In the diagram for ρ̄1 the group G is isomorphic to a cyclic group of order 2, say G = {1, σ}. The
group U is of order 1, 3 or 9 as can be deduced from dimF3 H

1(GQ3 ,F
χ3
3 ) = 2. If U is non-trivial,
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we denote by u ∈ U a non-trivial element. By conjugating ρ̄1 suitable, we may then assume that
ρ̄1(u) =

(
1 1
0 1

)
. In [Bo, §2] a profinite version of the Lemma of Schur-Zassenhaus is stated. It implies

that Gal(L(3)/Q3) is isomorphic to a semi-direct product PE oG. We thus fix a lift of the generator σ
of Gal(E/Q3) to Gal(L(3)/Q3) of order 2. By the quoted Schur-Zassenhaus lemma any two such lifts
are conjugate by an inner automorphism.

In the diagram for ρ̄2 the group H is a dihedral group of order 8 and its quotient G is a Klein
4-group. Because PL0 is a pro-3 group and the index [L : L0] is 2, one has L ∩ L0(3) = L0 and thus
Gal(LL0(3)/L0) is isomorphic to the product PL0×C. Again by the profinite Schur-Zassenhaus lemma,
we have Gal(LL0(3)/Q3) ∼= PL0 o H where the subgroup C ⊂ H acts trivially on PL0 . As above we
fix a splitting of Gal(LL0(3)/Q3)→ H and note that any two such differ by an inner automorphism.

Define U2(Fq) ⊂ GL2(Fq) as the subgroup of upper triangular matrices with 1’s on the diagonal
and define for any R ∈ CNLq the group Γ̃(R) as GL2(πR)−1(U2(Fq)), so that:

Γ(R) = GL2(πR)−1({1}) ⊂ Γ̃(R) ⊂ GL2(R).

The groups Γ(R) and Γ̃(R) are pro-3 groups. It follows from [Bo, §6.9] that any lift ρ : GQ3 → GL2(R)
of ρ̄i contains Gal(Q3/L(3)) in its kernel. But for ρ̄2 slightly more is true.

Lemma 2.1 Any lift ρ : GQ3 → GL2(R) of ρ̄2 contains Gal(Q3/LL0(3)) in its kernel.

Proof: The image of C under ρ̄2 is the set {±12} where 12 is the identity matrix in GL2(Fq). If we
denote by 12 the same matrix in GL2(R) it follows that

GL2(πR)−1({±12}) ∼= Γ(R)× {±12} ⊂ GL2(R).

By the profinite Schur-Zassenhaus lemma any element of order 2 in GL2(πR)−1({±12}) is conjugate
to −12 and hence equal to −12 since this element is central. By the same lemma ρ(Gal(Q3/L0)) ⊂
GL2(πR)−1({±12}) is a semidirect product of a group of order 2 and a pro-p group. Up to strict
equivalence we may assume that the group of order 2 is generated by the central element −12 ∈ GL2(R).
Hence ρ(Gal(Q3/L0)) is a product of a pro-3 group with {±12}. In particular, the pro-3 group is the
Galois group of a Galois extension of L0, and thus of a subextension of L0(3).

We now define functors EHi : CNLq → Sets of equivariant homomorphisms corresponding to the
ρ̄i as follows: To R ∈ CNLq we associate

EH1(R) :=
{
α ∈ HomG,cont

(
PE , Γ̃(R)

) ∣∣∣α mod mR = ρ̄1|GE
and α(u) =

(
1 1
0 1

)
if U 6= 0

}
if i = 1, and we associate EH2(R) := HomH,cont(PL0 ,Γ(R)) if i = 2. Again by Schur-Zassenhaus, if
i = 1 we fix a homomorphism λ1 : Gal(E/Q3)→ GL2(Zq) whose mod 3 reduction is the composite of ρ̄1

with a splitting of Gal(L/Q3)→ Gal(E/Q3), and if i = 2 a homomorphism λ2 : Gal(L/Q3)→ GL2(Z3)
which is a lift of ρ̄2. The following is a variant of [Bö, Prop. 2.3]; its proof is left to the reader who
may consult [Bo, §6,9].

Proposition 2.2 The functors EHi are representable. Let (R̃i, α̃i) denote a universal pair and define
the continuous representation ρ̃i : GQ3 → GL2(R̃3) by

ρ̃i((h, g)) := αi(h)λi(g)

for (h, g) in PE o G ∼= Gal(L(3)/Q3) or in PL0 oH ∼= Gal(LL0(3)/Q3), respectively. Then the strict
equivalence class of (R̃i, ρ̃i) is a versal hull of ρ̄i.
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3 Demuškin groups with group actions

The fields E and L0 both contain ζ3. By [La] it follows that the pro-3 groups PE and PL0 , respectively,
are Demuškin groups. We briefly recall some relevant notions form [La] on Demuškin groups, where
the prime p is specialized to 3:

A pro-3 Demuškin group is a pro-3 group D such that the following properties are satisfied:

(a) n := dimF3 H
1(D,F3) <∞.

(b) dimF3 H
2(D,F3) = 1.

(c) The cup product pairing H1(D,F3) ×H1(D,F3) → H2(D,F3) is an alternating non-degenerate
bilinear form.

By (a) the group D is topologically generated by n but no fewer elements. By (b) the group D has
a presentation as a pro-3 group with n generators and one relation. By (c) the number n is even. It
follows that the abelianization Dab = D/[D,D] is a quotient of Zn3 by a pro-cyclic subgroup. Hence
Dab ∼= Zn−1

3 × Z3/(Q) for a unique Q ∈ 3N ∪ {0}. Using that (in characteristic different from 2) all
non-degenerate alternating bilinear forms on a vector space are isomorphic, one can show that the
invariants Q and n completely classify Demuškin groups up to isomorphism, cf. [La].

To give the construction of a Demuškin group for a given pairing and a given Q, we first recall the
definition of the lower Q-central series of a pro-p group P : One sets P (0) := P and defines recursively
P (i+1) := (P (i))Q[P (i), P ], for i ≥ 0, as the topological closure of the subgroup of P (i) generated by all
Q-powers and all commutators with one of the arguments in P (i). Let now n ∈ N be even, V a vector
space over F3 of dimension n and b : V × V → F3 a non-degenerate alternating bilinear form. Let
Fn be a free pro-p group on n generators x1, . . . , xn. Define χi : Fn → F3 to be the homomorphism
with χi(xj) = δi,j . Then {χi}i=1,...,n is a basis of Hom(Fn,F3) = H1(Fn,F3) over F3. We choose an
isomorphism V ∼= Hom(Fn,F3), so that b induces a pairing on H1(Fn,F3). Let r ∈ Fn be an element
in F

(1)
n such that

r ≡ xQ1
∏

1≤i<j≤n
[xi, xj ]b(χi,χj) (mod F (2)

n )

and let N be the closed normal hull of the subgroup of Fn generated by r. By verifying conditions
(a)–(c) above, one can show that Fn/N is a Demuškin group with invariants n and Q and whose
alternating pairing on H1(Fn,F3) is the one induced from the blinear form b, cf. [La, § 3].

We now add the structure of an action of a finite group G of order prime to 3 to a pro 3-Demuškin
group. Observe that all F3[G]-modules are self-dual, as follows from character theory since 3 6 |#G.
The following is the specialization of [Bö, Theorem 3.4] to p = 3.

Theorem 3.1 Let G be a finite group of order prime to 3. If G acts on a pro-3 Demuškin group D,
then D oG is determined up to isomorphism by the invariants n and Q of D and the action of G on
H1(D,F3). The cup product pairing

∪ : H1(D,F3)×H1(D,F3)→ H2(D,F3) ∼= F3 (1)

is G-equivariant.
Conversely suppose that V and T are finite modules over F3[G] with dimF3 T = 1 and H0(G,V ) 6=

0 and that b : V × V → T is a non-degenerate alternating G-equivariant pairing. Then for any
Q ∈ 3N ∪ {0} there exists a Demuškin group D with invariants n = dimV and Q such that the F3[G]-
module H1(D,F3) is isomorphic to V . In this case there is a G-equivariant isomorphism between b
and the pairing (1).
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As recalled above, for K ∈ {E,L0} the group PK is a pro-3 Demuškin group. The invariant Q
is 3 since ζ9 /∈ K. By [Iw], the isomorphism type of V ∗ ∼= PK/P

(1)
K as a G = Gal(K/Q3)-module is

F3[G]⊕F3⊕Fχ3
3 , where F3 without a superscript denotes the trivial G-module of dimension 1. The G-

module structure of T = H2(GK ,F3) is easily identified with Fχ
−1
3 , so that in a topological presentation

of PK the action of G on a suitable generator of the normal subgroup of relations is via χ3.
A constraint on the pairing in Theorem 3.1 (and the only one) for Demuškin groups D of the form

Pk, k a local field, is given by [Ko, Sätze 6, 9, 10]: The F3[G]-module PK/P
(1)
K is isomorphic to a direct

sum (F3 ⊕ U)⊕ (Fχ3
3 ⊕ V ) such that the duals of the two summands are maximal isotropic subspaces

under the cup product pairing. This means that one can decompose the G-module H1(GK ,F3) into
irreducible summands, such that each summand is paired with exactly one other summand, but no
summand is paired with itself. Any two alternating pairings satisfying this constraint and having the
same underlying F3[G]-module and the same target T are isomorphic. Based on this, we now construct
explicit models for the groups PK :

Suppose first that ρ̄ = ρ̄1. Recall that G = Gal(E/Q3) = {1, σ}. On the free pro-3 group F4 on 4
topological generators x1, . . . , x4 consider the following action by G:

σ(x1) = x−1
1 , σ(x2) = x2, σ(x3) = x−1

3 , σ(x4) = x4.

Define r0 := x3
1[x1, x2][x3, x4]. This corresponds to the standard relation for the standard alternating

form on F4
3 – according to the definition of our action, this form is G-equivariant. We have

σ(r0) = x−3
1 [x−1

1 , x2][x−1
3 , x4], and r−1

0 = [x4, x3][x2, x1]x−3
1 ≡ σ(r0) (mod F

(2)
4 );

here we use that F (1)
4 /F

(2)
4 is abelian and that [g−1, h] = g−1hgh−1 ≡ hgh−1g−1 = [h, g] (mod F

(2)
4 ).

If N0 ⊂ F4 denotes the closed normal subgroup generated by r0, then F4/N0 is a Demuškin group;
however by [Bö, Prop. 3.6] the subgroup N0 is not preserved under G. To remedy this, following [Bö,
Example 3.7] we define

r := r0σ(r0)−1 = x3
1[x1, x2][x3, x4][x4, x

−1
3 ][x2, x

−1
1 ]x3

1

and denote by N4 ⊂ F4 the closed normal subgroup generated by r. Since r ≡ r2
0 (mod F

(2)
4 ), the

quotient F4/N4 is a Demuškin group. But furthermore we have σ(r) = σ(r0)r−1
0 = (r)−1. Therefore

N4 is preserved under the action of G. By Theorem 3.1 and the above observations on Q and on the
G-module structure of PE/P

(2)
E , we have shown:

Lemma 3.2 The pro-3 group F4/N4 is as a group with G-action isomorphic to PE.

Suppose now that ρ̄ = ρ̄2. Then H := Gal(L/Q3) is a dihedral group of order 8. It has a
presentation H = 〈%, σ | %4 = σ2 = %σ%σ = 1〉 where %, σ act as follows on L = Q3(ζ4,

4
√

3):

%(ζ4) = ζ4, %( 4
√

3) = ζ4
4
√

3, σ(ζ4) = −ζ4, σ( 4
√

3) = 4
√

3.

The quotient G := Gal(L0/Q3) of H is a Klein 4-group. By %̄ and σ̄ we denote the restrictions of %
and σ to L0 = Q3(ζ4,

√
3), so that G = 〈%̄, σ̄ | %̄2 = σ̄2 = %̄σ̄%̄σ̄ = 1〉. Choosing ζ3 = 1/2(−1 + ζ4

√
3),

we have

%̄(ζ4) = ζ4, %̄(
√

3) = −
√

3, %̄(ζ3) = ζ−1
3 , σ̄(ζ4) = −ζ4, σ̄(

√
3) =

√
3, σ̄(ζ3) = ζ−1

3 .

The irreducible F3[G]-modules are F3, Fχ3
3 , Fω1

3 , Fχ3ω1
3 . Thus

PL0/P
(1)
L0

∼= Fχ3
3 ⊕ F3 ⊕ Fχ3

3 ⊕ F3 ⊕ Fω1
3 ⊕ Fω1χ3

3
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as an F3[G]-module. On the duals of F3⊕Fχ3
3 and Fω1

3 ⊕Fω1χ3
3 we have the obvious alternating pairing.

We note that χ3(%̄) = χ3(σ̄) = ω1(%̄) = χ3ω1(σ̄) = −1 and ω1(σ̄) = χ3ω1(%̄) = 1.
Let now F6 be the free pro-3 group on topological generators x1, . . . , x6. The following table

describes an action of G on F6 such that F6/F
(1)
6
∼= PL0/P

(1)
L0

as an F3[G]-module:

x1 x2 x3 x4 x5 x6

%̄ x−1
1 x2 x−1

3 x4 x−1
5 x6

σ̄ x−1
1 x2 x−1

3 x4 x5 x−1
6

(2)

A first attempt for a relation describing PL0 might be

r0 := x3
1[x1, x2][x3, x4][x5, x6].

As before, by [Bö, Prop. 3.6] this cannot work. We define r1 := r0σ̄(r−1
0 ) and

r := r1σ̄%̄(r1) = r0σ̄(r−1
0 )σ̄%̄(r0)%̄(r−1

0 ).

Then σ̄(r1) = r−1
1 and from σ̄%̄ = %̄σ̄ one deduces

σ̄(r) = r−1
1 %̄σ̄(r−1

1 ) = r−1
1 σ̄%̄(r−1

1 )r−1
1 r1 = r−1

1 (r−1)r1

and
%̄(r) = %̄(r1)σ̄(r1) = σ̄%̄(r−1

1 )r−1
1 = (r1σ̄%̄(r1))−1 = r−1.

Hence the closed normal subgroup N6 of F6 generated by r is preserved under the action of G. The
following computations modulo F (2)

6 show that the quotient F6/N6 is a Demuškin group:

a3[b, c] ≡ [b, c]a3 (mod F
(2)
6 ), [b, c]−1 = [c, b] ≡ [b−1, c] (mod F

(2)
6 ),

σ̄(r0) ≡ r−1
0 (mod F

(2)
6 ), r1 ≡ r2

0 (mod F
(2)
6 ) %̄(r0) ≡ r0 (mod F

(2)
6 )

and thus r ≡ r4
0 (mod F

(2)
6 ). Again by Theorem 3.1 and the above remarks on Q and on the G-module

structure of PL0/P
(2)
L0

, we have shown:

Lemma 3.3 The pro-3 group F6/N6 is as a group with G-action isomorphic to PL0.

4 Proof of the main theorem in the residually reducible case

To prove Theorem 1.1, we determine EH1(R) ⊂ HomG,cont(PE , Γ̃(R)) for any ring R ∈ CNLq. By
Lemma 3.2 we may use the pro-3 group F4/N4 with its G-action from Lemma 3.2 as a model for PE .

Let α be in EH1(R) and denote by Ai ∈ Γ̃(R) ⊂ GL2(R) the image of xi ∈ F4, i = 1, . . . , 4,
under α. We assume (without loss of generality) that γ1(σ) = s :=

(
−1 0
0 1

)
∈ GL2(Zq). Then the

G-equivariance of α yields sA1s
−1 = A−1

1 , sA2s
−1 = A2, sA3s

−1 = A−1
3 and sA4s

−1 = A4. One
deduces

A1 =
(√

1+bc b
c

√
1+bc

)
, A2 = √

1+a

(√
1+d 0

0
√

1+d
−1

)
, A3 =

(√
1+b′c′ b′

c′
√

1+b′c′

)
, A4 = √

1+a′
(√

1+d′ 0

0
√

1+d′
−1

)
;

here a, a′, c, c′, d, d′ ∈ mR and b, b′ ∈ R – whether b or b′ lie in mR depends on ρ̄1. The image of the
explicit relation r under the homomorphism F4 → Γ̃(R) induced by α is

B := A3
1[A1, A2][A3, A4][A4, A

−1
3 ][A2, A

−1
1 ]A3

1.
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One verifies that this expression is invariant under σ̄( )−1, so that B =
(√

1+UV U
V

√
1+UV

)
for suitable

U, V ∈ mR which are formal expressions in b, b′, c, c′, d, d′. Conversely, given any 4-tuple of matrices
A1, . . . , A4 of the above shape with a, a′, c, c′, d, d′ ∈ mR and b, b′ ∈ R such that b, b′ mod mR agree with
ρ̄1(x1), ρ̄1(x3), respectively. Then this 4-tuple determines a G-equivariant homomorphism α ∈ EH1(R)
if and only if the (1, 2)- and (2, 1)-entries of B, as defined above, are zero. (By the invariance of B
under σ̄( )−1 it then follows that B = 1.)

To simplify the computation we define B1 := [A2, A1]A−6
1 [A−1

1 , A2] and B2 := [A3, A4][A4, A
−1
3 ].

Then B = 1 is equivalent to B1 = B2. Since the matrices B1 and B2 are again invariant under
σ̄( )−1, the equality B1 = B2 is equivalent to the equality B1(1, 2) = B2(1, 2) of the (1, 2)-entries of
these matrices and the equality B1(2, 1) = B2(2, 1) of their (2, 1)-entries. By explicit computation, e.g.
by a computer-algebra package, one can show that B1(1, 2)−B2(1, 2) and B1(2, 1)−B2(2, 1) lie in mR

(even though b and b′ may be units of R). We note that B1 is a formal expression in b, c, d and B2 in
b′, c′, d′.

Depending on the 1-cocycle β in the definition of ρ̄1, we shall divide the analysis of the functor
EH1 into three cases. By the inflation-restriction sequence and the isomorphism PE ∼= F4/N4 one has

H1(GQ3 ,F
χ3
q ) = HomGal(E/Q3)(GE ,Fχ3

q ) = HomG(F4/N4,Fχ3
q ).

By β we also denote the G-equivariant homomorphism induced by β. We distinguish the following
cases

(a) β(x1) 6= 0: Here we choose u = x1, so that b = 1 for the functor EH1. We write b′ =
τ(b′ mod mR) + δ′b where τ is the Teichmüller lift composed with the tautological algebra homo-
morphism Zq → R and δ′b is an element of mR.

(b) β(x3) 6= 0 = β(x1): We choose u = x3, so that b′ = 1 and b ∈ mR.

(c) β = 0: Then U = {1} and so b, b′ ∈ mR.

Theorem 4.1 The functor EH1 is represented by the pair (R̃, α̃) which is given as follows (according
to the above three cases):

(a) R̃ = Zq[[a, a′, δ′b, c, c′, d, d′]]/(B1(1, 2) − B2(1, 2), B1(2, 1) − B2(2, 1)) where we regard B1(1, 2) −
B2(1, 2) and B1(2, 1) − B2(2, 1) as formal expressions in the indeterminates a, a′, b, b′, c, c′, d, d′

in which we replace b by 1 and b′ by τ(b′ mod mR) + δ′b.

(b) R̃ = Zq[[a, a′, b, c, c′, d, d′]]/(B1(1, 2) − B2(1, 2), B1(2, 1) − B2(2, 1)) where we regard B1(1, 2) −
B2(1, 2) and B1(2, 1) − B2(2, 1) as formal expressions in the indeterminates a, a′, b, b′, c, c′, d, d′

in which we replace b′ by 1.

(c) R̃ = Zq[[a, a′, b, b′, c, c′, d, d′]]/(B1(1, 2)−B2(1, 2), B1(2, 1)−B2(2, 1)) where we regard B1(1, 2)−
B2(1, 2) and B1(2, 1)−B2(2, 1) as formal expressions in the indeterminates a, a′, b, b′, c, c′, d, d′.

In all cases α̃ is the homomorphism F4/N4 → Γ̃(R) defined by mapping xi to Ai with Ai as above.

To prove Theorem 1.1 for ρ̄1, we need to study the differences B1(1, 2) − B2(1, 2) and B1(2, 1) −
B2(2, 1) generating the relation ideal of R̃ in greater detail. Unfortunately the explicit expressions
for these differences are rather lengthy. To analyze them, we used a computer-algebra package – all
assertions we make in the following regarding these expressions were obtained in this way. We analyze
the three cases separately.
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Case (a): Substituting b = 1 in B1(1, 2)−B2(1, 2), we find

B1(1, 2)−B2(1, 2) ≡ c− d− β(x3)d′ (mod (3, (c, c′, d, d′)2))),

and thus we can solve for d. Since B1(1, 2)−B2(1, 2) is a quadratic polynomial in d, this can be done
explicitly. Precisely one of the two solutions obtained by replacing

√
1 + x by its standard Taylor series

expansion is the correct one. This solution for d can be substituted in B1(2, 1) − B2(2, 1) yielding a
single relation r(c, b′, c′, d′). One verifies

r(c, δ′b, c
′, d′) ≡ c2 + 2c′d′ + β(x3)′cd′ (mod (3, (c, δ′b, c

′, d′)2)).

Independently of β(x3), the polynomial c2 + 2c′d′ + β(x3)′cd′ is irreducible in F3[c, c′, d′]. Therefore
also r ∈ Zq[[a, a′, δ′b, c, c′, d′]] is irreducible which proves that R̃ = Zq[[a, a′, δ′b, c, c′, d′]]/(r) is an integral
domain.

Throughout the formal computations for case (a) one has to be aware that b′ is not a variable in
the maximal ideal. This makes the computations more difficult than in the remaining cases.

Case (b): Substituting b′ = 1 in B1(1, 2)−B2(1, 2) and noting that b now is a formal variable, we
find

B1(1, 2)−B2(1, 2) ≡ −d′ (mod (3, (b, c, c′, d, d′)2))

so that we can solve for d′. Again B1(1, 2) − B2(1, 2) is a quadratic polynomial in d′, and so one can
solve for d′ explicitly. Substituting the Taylor series expansion for d′ into B1(2, 1) − B2(2, 1) yields a
single relation r′(b, c, c′, d) and one verifies

−r′(c, b′, c′, d′) ≡ 3c− 2cd+ 3bc′ + c2b+ cd2 − bc′d (mod (3, b, c, c′, d)4).

The factorization −r′(c, b′, c′, d′) ≡ 3c − 2cd = c(3 − 2d) (mod (3, b, c, c′, d)3) of r′ is the unique one
modulo m3 where m is the maximal ideal of Zq[[b, c, c′, d]]. One can now verify that this factorization
is not liftable to a factorization modulo m4 and hence r′ is irreducible. Again we deduce that R̃ =
Zq[[a, a′, b, c, c′, d′]]/(r′) is an integral domain.

Case (c): Now b, b′ lie in the maximal ideal S := Zq[[a, a′, b, b′, c, c′, d, d′]] and one verifies

r1 := B1(1, 2)−B2(1, 2) ≡ bd+ b′d′ (mod (3, (b, b′, c, c′, d, d′)2)),

r2 := B1(2, 1)−B2(2, 1) ≡ cd+ c′d′ (mod (3, (b, b′, c, c′, d, d′)2)).

We claim that R̄ := S/(3, r1, r2) is an integral domain of Krull dimension 6. Assuming the claim for
the moment, the following argument shows that R̃ = S/(r1, r2) is an integral domain: Consider the
graded ring gr3R̃(R̃) := ⊕n≥03nR̃/3n+1R̃. As dimS − dim R̄ = 3, the sequence 3, r1, r2 is regular,
and so the element 3 ∈ R̃ = R/(r1, r2) is a non-zero-divisor. Hence gr3R̃(R̃) is the polynomial ring
R̄[X]. By the claim this is an integral domain. But if the associated graded ring (of the ideal 3R̃) is an
integral domain, then so is R̃. It also follows that R̃ is a complete intersection of relative dimension 6
over Zq.

To prove the claim, we define n̄ as the maximal ideal of S̄ := Fq[[a, a′, b, b′, c, c′, d, d′]] and m̄ as the
maximal ideal of R̄. There is an obvious surjection between graded rings

Fq[a, a′, b, b′, c, c′, d, d′] ∼= grn̄(S̄)→ grm̄(R̄)

and one verifies that its kernel is generated by the ”initial terms” of the reductions of r1, r2 modulo
3, i.e. by bd+ b′d′ and cd+ c′d′. It will suffice to show that Fq[a, a′, b, b′, c, c′, d, d′]/(bd+ b′d′, cd+ c′d′)
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is an integral domain of dimension 6: If this is proved grm̄(R̄) and thus also R̄ will have dimension
6 and will be an integral domain. Finally, to see that Fq[a, a′, b, b′, c, c′, d, d′]/(bd + b′d′, cd + c′d′) is
an integral domain of the asserted dimension observe that Fq[b, b′, c, c′, d, d′]/(bd+ b′d′, cd+ c′d′) is an
integral domain of Krull dimension 4 since it is a subring of

Fq[b±1, c±1, d±1, b′
±1
, c′
±1
, d′
±1]/( bb′ + d′

d ,
c
c′ + d′

d ) ∼= Fq[b±1, c±1, d±1, b′
±1]

under the obvious monomorphism and since both rings have the same fraction fields.
We have thus shown the following theorem, which due to Proposition 2.2 and Theorem 4.1 imme-

diately implies Theorem 1.1 for ρ̄1.

Theorem 4.2 Under the hypotheses of Theorem 4.1, in all three cases (a)–(c) the ring R̃ is an integral
domain, which is flat over Zq, a complete intersection and of relative dimension 5 in the first two cases
and 6 in the last case.

5 Proof of the main theorem for the residually dihedral case

Finally we investigate the functor EH2. Using the model F6/N6 for PL0 from Lemma 3.3, for any
R ∈ CNLq we have EH2(R) = HomG,cont(F6/N6,Γ(R)). To further compute this, we make the following

choice for the lift λ2 of H to GL2(Z3): We take λ2(ρ) =
(

0 1
−1 0

)
and λ2(σ) =

(
0 1
1 0

)
.

Let α be in EH2(R) and denote by Ai ∈ Γ(R) ⊂ GL2(R) the image of xi ∈ F6, i = 1, . . . , 6, under
α. Using Table (2), the G-equivariance of α yields

λ2(%)A1λ2(%)−1 = A−1
1 , λ2(σ)A1λ2(σ)−1 = A−1

1 , λ2(%)A2λ2(%)−1 = A2, λ2(σ)A2λ2(σ)−1 = A2 etc.

One deduces

A1 =
(√

1+d 0

0
√

1+d
−1

)
, A2 = (1 + a)

(
1 0
0 1

)
, A3 =

(√
1+d′ 0

0
√

1+d′
−1

)
, A4 = (1 + a′)

(
1 0
0 1

)
,

A5 =
(√

1+b2 b
b

√
1+b2

)
, A6 =

(√
1−c2 −c
c

√
1−c2

)
;

for a, a′, b, c, d, d′ ∈ mR. Using that the images of x1, . . . , x4 commute, the image of r0 under α is
A3

1[A5, A6]. It follows that the image of the relation r = 1 under the homomorphism F6 → Γ(R)

induced by α is B = B1B2
!= 1 where

B1 := A3
1[A5, A6][A−1

6 , A5]A3
1, B2 := A3

1[A−1
5 , A−1

6 ][A6, A
−1
5 ]A3

1.

Since B1 = α(r1) and B2 = α(σ̄%̄(r1)) the matrices Bi are invariant under σ̄( )−1 and the matrix B2

is obtained from B1 by conjugation by t :=
(

1 0
0 −1

)
. The invariance under σ̄( )−1 implies that in

any case B1 is of the form
(

1+U −V
V (1−V 2)/(1+U)

)
for U, V ∈ mR which are expressions in terms of b, c, d.

The condition r
!= 1 turns under α into the condition B−1

1 = tB1t
−1 in GL2(R). This is equivalent to

a single condition on B1, namely that 1 +U = (1− V 2)/(1 +U), i.e. that the (1, 1)-entry B1(1, 1) and
the (2, 2)-entry B1(2, 2) of B1 must agree. Conversely, any homomorphism F6 → Γ(R) for which the
image of r1 is a matrix B1 with B1(1, 1) = B1(2, 2) factors via F6/N6.
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Theorem 5.1 The functor EH2 is represented by the pair (R̃, α̃) defined as follows:

R̃ := Z3[[a, a′, b, c, d, d′]]/(B1(1, 1)−B1(2, 2))

where we regard B1(1, 1)−B1(2, 2) as formal expressions in the indeterminates b, c, d. The homomor-
phism α̃ : F6/N6 → Γ(R) is defined by mapping xi to Ai with Ai as above.

To prove Theorem 1.1 for ρ̄2, it remains to make B1(1, 1)−B1(2, 2) explicit. Since it fits this page,
we simply display the formally calculated matrix B1:(

(1+d)3
(

1+8b2c2(1−c2)+4bc
√

(1+b2)(1−c2)(1+4b2c2)
)

−4b2c(1+2c2+4b2c2)
√

(1−c2)

4b2c(1+2c2+4b2c2)
√

(1−c2) (1+d)3
(

1+8b2c2(1−c2)−4bc
√

(1+b2)(1−c2)(1+4b2c2)
) )

The vanishing of B1(1, 1)−B1(2, 2) is thus equivalent to that of

r := (1+d)6
(

1+8b2c2(1−c2)+4bc
√

(1+b2)(1−c2)(1+4b2c2)
)
−
(

1+8b2c2(1−c2)−4bc
√

(1+b2)(1−c2)(1+4b2c2)
)
.

Modulo (3,m4) for m the maximal ideal of Z3[[a, a′, b, c, d, d′]] we find r ≡ −bc−d3. Therefore the image
of r in F3[[a, a′, b, c, d, d′]] is irreducible and so is r. It follows that Z3[[a, a′, b, c, d, d′]]//(r) is an integral
domain. All other assertions of the following theorem are simple to verify. Due to Proposition 2.2 and
Theorem 5.1 the theorem immediately implies Theorem 1.1 for ρ̄2.

Theorem 5.2 The ring R̃ in Theorem 5.1 is an integral domain, which is flat over Zq, a complete
intersection and of relative dimension 5.
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