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Abstract. We study deformation theory of elliptic fibre bundles over curves
in positive characteristics. As an application, we give examples of non-liftable
elliptic surfaces in charactertic two and three, which answers a question of
Katsura and Ueno. Also, we classify deformations of bielliptic surfaces.

1. Introduction

In their seminal paper on elliptic surfaces in characteristic p [KU85], Katsura
and Ueno asked if every elliptic surface of Kodaira dimension one, over a field of
positive characteristic, can be lifted to characteristic zero.

Usually, one proves non-liftabilty for a given surface X by showing that cer-
tain numerical invariants of X, which are preserved under deformations, cannot be
achieved in characteristic zero. For example, if X is a surface of general type over
C, one has the Bogomolov-Miyaoka-Yau inequality, which implies:

K2
X/χ(OX) ≤ 9

Examples of surfaces, violating Bogomolov-Miyaoka-Yau, have been constructed by
Szpiro, Hirzebruch and others (see [Lie09, Section 7] for an overview).

What is the situation in Kodaira dimension one? Recall that every surface of
this class has a unique elliptic or quasi-elliptic fibration. A fibration is called quasi-
elliptic if the generic fibre is a cuspidal curve of arithmetic genus one.

In comparison to the theory of surfaces of general type, numerical invariants do
not play a central role in Kodaria dimension one. Namely, one always has K2

X = 0
and if X is elliptic and not quasi-elliptic than χ(OX) ≥ 0 holds. The last fact was
used by Raynaud: In [Ray78] he constructed quasi-elliptic surfaces with χ(OX) < 0,
which are therefore non-liftable.

Our approach to construct non-liftable elliptic surfaces is entirely different. In-
stead of using invariants, we classify all possible deformations of a given surface,
and a posteriori conclude that there are only deformations over rings in which p is
zero. In particular, there is no lifting to characterstic zero.

To make this work, we have to chose a class of surfaces, with a sufficiently
easy deformation theory, but being on the other hand rich enough, to provide the
examples we are looking for. As it turns out, the right objects are elliptic fibre
bundles over curves.

Let us fix a field k, and a curve C over k. By an elliptic fibre bundle over C,
we understand an elliptic fibration X → C which is locally trivial for the étale
topology. That is, every point x ∈ C has an étale neighborhood U → C such that
X ×C U is isomorphic to a product U ×k E, where E is an elliptic curve over k.
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An elliptic fibre bundle is called Jacobian if it has a section. Examples of Jaco-
bian elliptic bundles can be constructed as follows: Let E be an elliptic curve over
k, and let Γ be a finite group acting on the group scheme E. Given a curve C/k
with a free Γ action, we can form

(1.1) X = (E × C)/Γ,

where the action on the product is diagonal. The quotient X has a smooth Jacobian
elliptic fibration X → C/Γ.

We will classify deformations of elliptic fibre bundles over curves in several steps.
First, we study Jacobian bundles, and prove that their deformations are always of
the form (1.1).

Next, we study the relation between Jacobian and the non-Jacobian bundles.
For an arbitrary elliptic bundle f : X → C denote by F ibX/C the functor of de-
formations of X extending its fibration structure. Associated to X is a Jacobian
bundle over the same base, which we denote by J . Let J acJ/C be the subfunctor of
F ibJ/C of deformations that have a section. For precise definitions of these functors
see Definition 4.1.

There is a natural map F ibX/C → J acJ/C given by taking the zero component
of the relative Picard scheme.

Theorem (4.3). The map of deformation functors F ibX/C → J acJ/C is formally
smooth and we have an equation of vectorspace dimensions

dim(F ibX/C(k[ε])) = dim(J acX/C(k[ε])) + h1(C,Lie(J/C)).

This resembles situation of elliptic fibration over a field: The Jacobian fibra-
tions can be dealt with explicitly and the non Jacobian ones are described by a
cohomological theory, based on the group structure of the former.

Next, we answer the question whether, given an elliptic bundle X → C, every
deformation admits an extension of the fibration structure:

Theorem (5.1). If X is of Kodaira dimension one, then the unique elliptic fibration
extends to every deformation.

Now we can address the liftability question: In section 3.1 we will construct
Jacobian bundles over fields of characteristic two and three, which cannot be lifted
as Jacobian bundles. By the above theorems, this is enough to show non-liftabilty.

Theorem (3.7). There exist elliptic fibre bundles in characteristic two and three,
that do not lift to characteristic zero.

As a further application of the theory, we treat the case of bielliptic surfaces.
This case is in a certain sense more interesting than the Kodaira dimension one case
because one has to use methods from the deformation theory of abelian schemes.
Our main result is:

Theorem (6.9). If X is a bielliptic surface, then both elliptic fibration extend under
deformations. In other words: Every deformation of a bielliptic surface is bielliptic.

For small p one encounters phenomena, which do not appear when considering
the same class of surfaces in characteristic zero. For example, deformations become
obstructed which was already observed by W. Lang in [Lan95]. There is also the
possibility of deforming a Jacobian bielliptic surface into a non-Jacobian one, which
is absent in characteristic zero.

Acknowledgments. This article is a part of my Ph.D. thesis. I am indebted to my
adivsor Stefan Schröer for introducing me to liftabilty questions and helpful discus-
sions. I would also like to thank William Lang, Christian Liedtke, Matthias Schütt
and Philipp Gross for inspiring conversations, hints, and pointing out mistakes.



DEFORMATIONS OF ELLIPTIC FIBRE BUNDLES 3

2. Preliminaries

In this section we introduce some standard techniques which will be used later on.
Concerning deformation theory, we follow Schlesinger’s fundamental paper [Sch68]
in terminology, and freely make use of basic facts about pro-representable hulls of
deformation functors.

A key problem that will appear in Sections 5 and 6 is of the following form: Given
a deformation X of some scheme X, what properties and additional structures carry
over to X ?

Let S be a scheme. For an S-scheme X, we consider the category EtS(X) of
S-schemes with a finite and étale S-map to X (“rěvetement étale”). It turns out
that this category is invariant under nilpotend thickenings:

2.1. Theorem (SGA1 Theorem 5.5 and Theorem 8.3 [SGA63]). Let S be a scheme
with a closed subscheme S0 having the same topological space as S itself. Let X be
an S-scheme, and denote by X0 = X ×S S0 the restriction to S0. Then the functor
EtS(X ) → EtS0(X0) given by

Y 7→ Y ×S S0

is an equivalence of categories.

This theorem can be seen as a geometric form of Hensel’s lemma from commu-
tative algebra. We note two special cases: The categories of étale Galois covering
of X and X0 are equivalent, and so are the categories of finite étale group schemes.
Recall that S′ → S is called Galois with group Γ if Γ acts on S′ as an S-scheme
and we have an isomorphism

Γ× S′ ' S′ ×S S′ given by (σ, x) 7→ (σ(x), x).

2.0.1. Notations. Finally, let us fix some notations. By k we denote an algebraically
closed field of characteristic p > 0 if not stated otherwise. We denote by W = W (k)
its ring of Witt vectors. Let Alg be the category of local artin W -algebras having
residue field k. Every scheme will be assumed notherian, and by a curve over some
base scheme S we will always mean a proper, smooth and connected S-scheme.

3. Deformations of Jacobian bundles

In this Section, let R be a complete notherian local ring with residue field k. We
denote by S a flat, integral and projective R-scheme. Let J be an elliptic scheme
over S, and let S0 be the “reduction” S ×R k of S and likewise set J0 = J ×S S0.
Our treatment of Jacobian bundles is based on the following statement, which is a
simple application of the moduli theory of elliptic curves.

3.1. Proposition. For some integer N ≥ 3 which is prime to p, assume that the N -
torsion subgroup scheme of J is split i.e; there is an isomorphism J [N ] ' (Z/NZ)2.
Then there exists an elliptic curve E over R such that J is isomorphic to E ×R S.

Proof. Let us fix a level-N structure; i.e. an isomorphism J [N ] ' (Z/NZ)2. From
[KM85, Corollary 4.7.2] we know that there exists a fine moduli space M of elliptic
schemes with a fixed level-N structure.

This means that we get a morphisms c : S →M over R such that J ' c∗(Euniv)
where Euniv is the universal family of the moduli problem; i.e. Euniv is an elliptic
scheme with a level-N structure, but the level structure will no longer be relevant
for us.

Again by [KM85, Corollary 4.7.2] we know that M is affine. The morphism c is
therefore given by an R-algebra homomorphism

H0(M,OM) → H0(S,OS) = R.
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In other words, c factors over Spec(R) and therefore J is just the pullback of an
elliptic curve E over R. �

We use this to classify deformations of Jacobian fibre bundles:

3.2. Proposition. Let S ′ → S be a finite and étale Galois covering with group Γ
such that J [N ]×S S ′ ' (Z/NZ)2. Then

J ' (E ×R S ′)/Γ,

where E is an elliptic over R, and the action is the diagonal action given by the
Galois action on S ′ and by a homomorphism Γ → Aut(E) on the left factor.

Proof. The fibre bundle J ×S S ′ satisfies the assumptions of Proposition 3.1. Thus
there exists an elliptic curve E over R and an isomorphism J ×S S ′ ' E ×R S′.

In other words, the two fibrations J and E×RS are twists of each other, becoming
isomorphic after base change with S ′ → S. Twists of the fibration E ×R S are
classified up to isomorphism by the Galois cohomology set H1(Γ, A(S ′)), where A
is the group scheme Aut(E ×R S ′) and we consider its S ′-valued points as Galois
module under Γ.

We claim that the Galois action on A is trivial: For a suitable integer N ≥ 3
and prime to p we have a closed immersion A ⊂ Aut(E [N ]×R S ′). However, since
R is a strict henslian ring, we find that E [N ] ×R S ′ is the constant group scheme
(Z/NZ)2 on S ′ and futhermore we see that Aut(E [N ]×R S ′) is the constant group
scheme Gl2(Z/NZ) on S ′.

Finite étale group schemes over S correspond to finite abstract groups with a
continuous π1(S)-action. We saw that A can be embedded into a group scheme
with trivial π1(S)-action, hence the action on A has to be trivial as well. The
action of Γ on A is an induced action of a finite quotient π1(S) � Γ, and therefore
trival as well. Thus we have

H1(Γ,Aut(E ×R S ′)(S ′)) ' Hom(Γ,Aut(E ×R S ′)(S ′)).
For a homomorphism ρ in the above group, the corresponding twist looks like
(E ×R S ′)/Γ, where the action of σ ∈ Γ is given by

(x, y) 7→ (ρ(σ)(x), σy).

�

We can use these results to give a necessary and sufficient criterion for the
existence of Jacobian liftings:

3.3. Corollary. Let J be a Jacobian fibration over S, given by (E ×k S′)/Γ for
some étale Galois covering S′ → S with group Γ. Denote the action of Γ on E by
ρ0. Then there exists a lifting J → S if and only if there exists a lifting E of E
over R together with an extension of the action ρ0.

Proof. To show sufficiency is easy. The covering S′ → S lifts uniquely to S ′ → S
which is again Galois with group Γ. If a lifting E of E with the prescribed properties
exists, simply put J = (E ×R S ′)/Γ. This quotient will exist in the category of
schemes because Γ is finite.

In order to show necessity, assume that we have a lifting J → S. Like before, we
also have the unique lifting S ′ → S of the Galois covering. Observe that J [N ]×SS ′
is split, since J [N ] is a finite and étale group scheme and the reduction is split by
assumption. Using Proposition 3.2, we find that J ' (E×RS ′)/Γ, where the action
of Γ on E is denoted by ρ. We claim that ρ lifts the action ρ0:

Consider the induced action of ρ on E [N ] for some integer N . The categories
of étale group schemes over k and R are equivalent, hence ρ is determined by its
action on the reduction E[N ].
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For N ≥ 3 we know that the group homomorphisms, given by restricting the
automorphism group of an elliptic scheme to its N -torsion is injective [KM85, Corol-
lary 2.7.2]. However the isomorphism type of J [N ] allows to read of the action of
Γ on J [N ], for it is given by a class in

H1(Γ,Aut(J [N ])(S′)) ' Hom(Γ,Aut(E[N ])(S′))

and the element of the latter group which corresponds to J [N ] is just ρ0. Hence
the restriction of ρ to the reduction has to be ρ0. �

3.1. Non-liftable elliptic surfaces. We postpone the development of the general
theory at this point to give some specific examples of Jacobian elliptic bundles that
do not have a lifting to characteristic zero.

3.1.1. Characterstic three. For the first example, let k be an algebraically closed
field of characteristic three, and let E be an elliptic curve over k with j-invariant
0. By [Sil09, Appendix A, Proposition 1.2] the automorphism group G of E is a
semidirect product Z/3ZoZ/4Z where Z/4Z acts on Z/3Z in the unique non trivial
way.

As we shall see later on, there exists a smooth and proper curve C over k such
there is a surjection π1(C) � G. Denote by C ′ → C the associated finite and étale
Galois cover. Now we set

J = (E ×k C ′)/G,

where the action of G on E is the action of the automorphism group.

3.4. Lemma. Let the characterstic of k be three, and let Λ be in Alg (see 2.0.1). If
for an elliptic curve E over Λ the order of the automorphism group of E is greater
than six, it follows 3 · Λ = 0.

Proof. Assume by contradiction, that the order of Aut0(E) is greater than six. Since
two is a unit, there is a Weierstraß equation for E of the following form:

y2 = x3 + a2x
2 + a4x + a6

Admissible transformations look like x 7→ u2x + r and y 7→ u3y + u2sx + t. The
specific form of the equation implies t = 0 and s = 0. Standart arguments show
that either u4 = 1 or u6 = 1. Thus, an automorphism group of order greater than
six would have to contain an element of the form x 7→ x + r.

We get an equation a2 = a2 + 3r, which implies 3r = 0. But r has to be a
unit, for otherwise the reduction map would not be injective on the automorphism
group. Thus 3 = 0 follows. �

Now we get as a direct consequence of Corollary 3.3:

3.5. Proposition. The elliptic bundle J can be lifted (as Jacobian fibration) only
over rings in which 3 = 0 holds.

3.1.2. Characteristic two. Now assume k is a characteristic two. Given an elliptic
curve E over k with j-invariant 0, the group of automorphisms will be a semidirect
product G = Q o Z/3Z, where Q is the quaternion group. Similarly to Lemma 3.4,
one shows that neither G nor Q can lift to rings with 2 6= 0. Now assume the
existence of two curves CG and CQ together with étale Galois covers C ′

G → CG of
group G and C ′

Q → CQ of group Q respectively.
This gives rise to two Jacobian bundles: JG ' (C ′

G×E)/G and JQ ' (C ′
Q×E)/Q.

Again by Corollary 3.3 it follows:

3.6. Proposition. The elliptic bundles JG and JQ can be lifted (as Jacobian fibra-
tions) only over rings in which 2 = 0 holds.
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Now we can state the main theorem for all the Jacobian bundles constructed in
this section:

3.7. Theorem. The bundles J (in characteristic three) and JG, JQ (in character-
istic two) do not admit a formal lifting to characteristic zero.

Proof. We already saw that JG and JQ cannot be lifted as Jacobian elliptic fibre
bundles. From Proposition 4.1 below, it follows that the same is true for liftings
which are not Jacobian but admit an elliptic fibration. Finally, observe that the
base curves on both cases are of genus g ≥ 2, which implies via canonical bundle
formular, that the Kodaira dimension of JQ and JQ are 1. Now, by Theorem 5.1
below, we get that every deformation is elliptic. �

To finish this discussion, we have to establish the existence of curves with specific
étale Galois coverings.

To this end, we use a powerful theory which is developed in [PS00]. First we
fix some group theoretic invariants. Let G be a group with the property that the
maximal p-Sylow subgroup P is normal. We set H = G/P . Then one can write G
as a semidirect product P o H.

We denote by P the maximal elementary abelian quotient of P , and consider it
as a Fp-vector space, for it is a p-torsion group. Let Z(H) be the set of irreducible
characters with values in k, and let Vχ be an irreducible k-representation of H
with character χ. On P , we have an H action coming from the structure of the
semidirect product. This induces an H-representation on P. Write

P ⊗Fp k ' ⊕V mχ
χ .

The mχ are thus numerical invariants of the group G.

Theorem (Theorem 7.4 [PS00]). Let G be a group having a normal p-Sylow sub-
group P . Suppose H = G/P is abelian. Then there exists a curve of genus g ≥ 2
having an étale Galois covering with group G if the minimal number of generators
of H is less or equal than 2g, and mχ ≤ g − 1 holds for every χ ∈ Z(H).

In the characteristic three example we had G = Z/3Z o Z/4Z. The minimal
number of generator of H = Z/4Z is one, the action of H on P is obviously
irreducible and given by the sign involution. Thus the assumption of the theorem
are satisfied for some curve of genus 2.

In the characteristic two examples we also have that the maximal p-Sylow group
is normal. Thus for g sufficiently large, we will find curves with the required cov-
erings.

4. Deformations of elliptic torsors

We start with some general theory on deformations of torsors under smooth
commutative group schemes. This paragraph mainly rephrases [SGA66, Remarque
9.1.9]. We work in the following setting: Fix a small extension of algebras in Alg

0 → I → Λ → Λ0 → 0.

Let S be a flat Λ-scheme, S0 = S ⊗Λ Λ0 its reduction over Λ0. We have a closed
immersion i : S0 → S. Let G be a smooth commutative S-group scheme and G0 =
G ×S S0 the reduction over Λ0.

For a group functor F on the category of S0 schemes, we defined the pushforward
functor i∗F on S-scheme by sending a S-scheme T to F(T ×S S0).

There is a natural specialization map s : G → i∗G0 of group functors. To inves-
tigate its kernel, we introduce a coherent sheaf on S0:

L = Lie(G0/S0)⊗OS0
I.
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We have a sequence of group functors on S namely

(4.1) 0 → i∗L → G s−→ i∗G0 → 0,

whose exactness follows from the smoothness of G0, as can be seen affine locally.
Taking étale cohomology of (4.1), we obtain the fundamental long exact sequence

(4.2) 0 → i∗G0(S)/s(G(S)) → H1(S, i∗L ) → H1(S,G) s−→
→ H1(S, i∗G0) → H2(S, i∗L ).

The sheaves L and i∗L are coherent modules. We find

Hi(S, i∗L ) ' Hi(S0,L ) ' Hi
zar(S,Lie(G0/S0))⊗ I.

Furthermore, we claim that the group H1(S, i∗G0) is isomorphic to H1(S,G0): By
the Leray spectral sequence we get an exact sequence of étale cohomology groups

0 → H1(S, i∗G0) → H1(S0,G0) → H0(S0, R
1i∗G0).

We claim, that the last term vanishes: It is enough to show that (R1i∗G0)x = 0
for every closed point x of S; i.e. of S0. By [Mil80, Theorem 1.15] it follows that
(R1i∗G0)x ' H1(Spec(O∧

S0,x),G0) and the last group vanishes since Spec(O∧
S0,x) has

only the trivial étale covering. Recall, that k is algebraically closed.
In our situation, this means the following: Let J → C be an Jacobian elliptic

bundle over a curve C over k. Let J0 → C0 be a Jacobian lifting over Λ0 ∈ Alg.
As above, we fix a small extension

0 → I → Λ → Λ0 → 0.

4.1. Proposition. Let J → C be an Jacobian lifting of J0/C0 to Λ. Then every
J0-torsor X0 over C0 lifts to a J -torsor over C. Futhermore, let m be an integer
prime to p. Then we have an isomorphism of m-torsion groups:

H1(C,J )[m] ∼−→ H1(C0,J0)[m]

induced by (4.2). This means that liftings of torsors are unique up to p-torsion.

Proof. From the sequence (4.2) we know that the obstruction to lifting the coho-
mology class associated to a X0 lies inside H2(C0,Lie(J0/C0))⊗ I. Note that since
Lie(J0/C0) is a coherent OC0-modul, we can compute its cohomology with respect
to the Zariski topology. Since C0 is one-dimensional, this group is zero.

Once we have lifted the cohomology class, we have to answer the question,
whether it is associated to a representable J -torsor. By [Mil80, Theorem 4.3 (e)]
this will be the case if it is torsion. We claim that H1(C,J ) is torsion: Since
H1(C, J) is torsion, it is enough to show that H1(C0,Lie(J0/C0)) ⊗ I is torsion,
then the assertion will follow by induction. But the former group is a Λ-module,
and Λ itself is annihilated by some power of p.

The second statement follows now directly by taking m-torsion in (4.2). �

4.2. Remark. In the case where the base is zero dimensional, one recovers the well
known fact that the Tate-Šafarevič group of an elliptic curve over a complete local
ring with algebraically closed residue field is zero, since the first cohomology of the
Lie algebra vanishes.

We want to rephrase the above proposition in the language of deformation func-
tors. For that purpose, we define two deformation functors associated to an elliptic
bundle X → C over k.

4.1. Definition. By a deformation of X over some Λ ∈ A, we mean a pair (X , ε),
where X is a flat scheme over Spec(Λ) and ε is an isomorphisms ε : X ⊗Λ k ' X.
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Let Def X : A → (Sets) denote the functor, which sends Λ ∈ Alg to the set of
isomorphism classes of deformations of X/C.

By a deformation of a fibration X/C, we understand a deformation (X , ε) of X
together with a map X → C, such that the isomorphism ε is in fact an isomorphism
of C schemes.

The functor of deformation of X as fibration is denoted by F ibX/C : A → (Sets).
Two deformations of X/C and X ′/C are called isomorphic if there exists an

isomorphisms of deformations, which is also an isomorphisms of C-schemes.
Let J/C be the Jacobian fibration associated to X/C. Denote its zero section

by ε0 : C → J . We define the J acJ/C the functor of liftings of J/C with a fixed
lifting ε of ε0. For an element (J , ε) of J acJ/C note that a different choice of ε
leads to an isomorphic element of J acJ/C . Thus we view J acJ/C as a subfunctor
of F ibJ/C ; i.e. the subfunctor of those deformations admitting a lifting ε0.

We get a natural map F ibX/C → J acJ/C as follows: For a deformation X/C
(not necessarily having a section) we consider the zero component of its Picard
scheme. Since k is of characterstic p, we can always lift an appropriate pth power
of a relative ample line bundle of X → C. Therefore the representabilty of PicX/C

follows from:

Theorem (Theorem 4.8 [Kle05]). Let f : Z → S be projective and flat and have
integral geometric fibres. Then PicZ/S is representable by a separated S-scheme.

Since X/C is a relative curve, the Picard scheme will be smooth, and the zero
component Pic0

X/C is a smooth elliptic scheme over C. Now there is a natural action
of Pic0

X/C on X/C coming from the isomorphism

Pic1
X/C ' X/C.

We define the natural map F ibX/C → J acJ/C by sending the fibration X/C to
Pic0

X/C . In this language, Proposition 4.1 now becomes the first part of our main
theorem:

4.3. Theorem. The map of functors F ibX/C → J acJ/C is formally smooth. Fur-
thermore we have

dim(F ibX/C(k[ε])) = dim(J acX/C(k[ε])) + h1(C,Lie(J/C)).

Proof. Recall that F ibX/C → J acJ/C is formally smooth if for a surjection Λ � Λ0

in Alg, which can be assumed to be small, the induced map

F ibX/C(Λ) → F ibJ/C(Λ0)×J acJ/C(Λ0) J acJ/C(Λ)

is surjective. However, this follows directly from Proposition 4.1 applied to every
element J of J acJ/C(Λ) with reduction J0 over Λ0 and a J0 torsor X0.

To prove the statement about the tangent space dimensions, first note that
F ibX/C fullfills the Schlesinger criteria and carries therefore a vector space structure
on its tangent space. We are going to determine the kernel of the following linear
map

F ibX/C(k[ε]) → J acJ/C(k[ε]),

which consists of torsors under J⊗k[ε]. To determine this group, we use again (4.2).
The first term vanishes, since every section C → J lifts to the trivial deformation.
Hence the kernel is given by H1(C,Lie(J))⊗ I. �
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5. Elliptic bundles of Kodaira dimension one

Let f : X → C be an elliptic bundle of Kodaira dimension one over k. We
show that every deformation of X admits a fibration, which lifts the unique elliptic
fibration on X. In other words:

5.1. Theorem. For an elliptic bundle X of Kodaira dimension one, the inclusion
of deformation functors F ibX/C → Def X is an isomorphism.

First, we need an estimate for h1(X, ΘX).

5.2. Lemma. Denote by g ≥ 2 the genus of C, and set L = R1f∗OX . We get

(5.1) h1(X, ΘX) ≤ g − 1 + h0(C,L ) + h0(C,L 2) + 3g − 3.

If X is Jacobian, we get equality in (5.1).

Proof. Since f is smooth, we have an exact sequence

(5.2) 0 → ΘX/C → ΘX → f∗ΘC → 0.

This gives rise to an exact sequence of cohomology groups

H1(X, ΘX/C) → H1(X, ΘX) → H1(X, f∗ΘC).

Thus h1(X, ΘX) ≤ h1(X, f∗ΘC)+h1(X, ΘX/C). We claim that ΘX/C is isomorphic
to f∗L : This follows from the canonical bundle formular

ωX ' f∗(L −1 ⊗ ωC)

(see [BM77, Theorem 2]), and from the expession

(ΘX/C)−1 ' ωX/C ' ωX ⊗ (f∗ωC)−1.

To compute h1(X, ΘX/C) we use the Leray spectral sequence and the projection
formula, which yields

0 → H1(C,L ) → H1(X, ΘX/C) → H0(C,R1f∗f
∗L︸ ︷︷ ︸

'L⊗2

) → 0.

By Riemann-Roch we get h1(C,L ) = g − 1 + h0(C,L ). Thus

h1(X, ΘX/C) = g − 1 + h0(C,L ) + h0(C,L ⊗2).

For h1(X, f∗ΘC) we obtain with the same approach

0 → H1(C,ΘC) → H1(X, f∗ΘC) → H0(C,L ⊗ΘC) → 0.

Since g > 1, the last term vanishes and we get h1(X, f∗ΘC) = 3g − 3.
In the Jacobian case let s : C → X denote the section. The natural map f∗Ω1

C →
Ω1

X has a global splitting given locally by d(g) 7→ d(s∗g)⊗ 1. Now, dualizing yields
a splitting of (5.2). �

Next, we show the surjectivity of the inclusion F ibX/C → Def X .

5.3. Proposition. Let Λ be an object of Alg. Every deformation X ∈ Def X(Λ)
of the total space of X admits a lifting of the fibration on X; in other words X ∈
F ibX/C(Λ).

Proof. Denote by J the Jacobian of X. By Proposition 3.2, we know that there is
an étale Galois covering C ′ → C with group Γ, such that J ′ = J ×C C ′ = E ×k C ′,
for some elliptic curve over k. Since forming Pic0 commutes with base change,
the Jacobian associated to the fibration X ′ = X ×C C ′ will be J ′. We denote by
X ′ → X the unique lifting of X ′ → X.

We claim that X ′ admits an elliptic fibration. To see this, we show that the de-
formation functors F ibX′/C′ and Def J′/C associated with X ′ are isomorphic. Since
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J ′ has unobstructed deformations by Corollary 3.3, we conclude by Proposition 4.1,
that F ibX′/C is unobstructed as well. It remains to show that

h1(X ′,ΘX′) = dim(F ibX′/C(k[ε])).

Let g denote the genus of C. We have h1(X ′,ΘX′) ≤ 4g − 2 by Lemma 5.2.
As for F ibX′/C(k[ε]), we have (3g − 3) + 1 dimensions coming from the functor of
Jacobian deformations of J ′: Namely 3g − 3 from the deformations of the C ′, and
one dimension coming from E. The first cohomology of the Lie algebra OC′ of J ′

gives g additional dimensions.
Now, we come back to our deformation X of X. We claim that the fibration

g : X ′ → C ′ descends to X . For this we have to show that for each σ ∈ Γ the
following diagram commutes:

X ′

��

σ // X ′

��
C

σ // C

However, this follows because the elliptic fibration on X ′1 is unique: First note,
that this is the case on the reduction X ′ because of Kodaira dimension one. For a
given first order deformation, the tangent space of the functor of deformations of
g : X ′ → C ′ is H0(X ′, g∗ΘC′). However, this vector space is trivial since the dual
g∗Ω1

C′ of g∗ΘC′ has a non zero global section, because g(C ′) ≥ 2. Now our claim
follows by induction on the length of Λ. �

6. Deformations of bielliptic surfaces

As mentioned in the introduction, a surface X over k is called bielliptic, if it
is of Kodaira dimension zero with invariants b1 = b2 = 2. Directly from the
invariants, we get that the Albanese of X is an elliptic curve. The associated map
f : X → Alb(X) is a smooth elliptic fibration; see [BM77, Proposition 5].

To keep the presentation streamlined, we first consider the cases where f has a
section. From Proposition 3.2 we know that X is given by a quotient

(E × F )/Γ

where F → Alb(X) is an étale Galois covering of group Γ (i.e. an étale isogeny)
and Γ acts on E fixing the zero section. Note that this action cannot be trivial, for
otherwise X would be an abelian surface. Without loss of generality, we assume the
action of Γ on E faithful. Since the fundamental group of an elliptic curve is abelian,
Γ has to be abelian too. It follows that Γ equals Z/dZ, where d ∈ {2, 3, 4, 6}. We
fix the image of a generator of Γ in Aut0(E), and denote it by ω. As a first step,
we calculate some invariants of X depending on p and d which are important for
the deformation behaviour of X.

6.1. Lemma. If d is not a power of p and d 6= 2 we have

h0(X, ΘX) = 1, h1(X, ΘX) = 1, h2(X, ΘX) = 0, h1(Alb(X),Lie(X)) = 0.

If d = 2 and p 6= 2 we get

h0(X, ΘX) = 1, h1(X, ΘX) = 2, h2(X, ΘX) = 1, h1(Alb(X),Lie(X)) = 0.

Whereas if d is a power of p it holds

h0(X, ΘX) = 2, h1(X, ΘX) = 4, h2(X, ΘX) = 2, h1(Alb(X),Lie(X)) = 1.
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Proof. Set C = Alb(X). Since f is smooth, we have an exact sequence

0 → ΘX/C → ΘX → f∗ΘC → 0.

On the covering E × F of X the corresponding sequence is split, and since the
action of Γ is diagonal, the splitting descends to X. Therefore ΘX decomposes as

ΘX ' ΘX/C ⊕ f∗ΘC .

Since C is an elliptic curve, we find f∗ΘC ' OX . As for ΘX/C , it will be a
torsion line bundle of order l equal to the order of the induced action of Γ on ΘE .
To see this, note that Γ acts trivially on Θ⊗l

E because the induced action is by roots
of unity. Thus a section of Θ⊗l

E will descend to a section of ΘX/C .
If d is a power of p, this action has to be trivial, since Hom(Z/pnZ, Gm) = 0.
To determine the action in general, note that we have Lie(E) = Lie(E[p]) =

Lie(E[p]0). We set H = E[p]0. It will be either αp or µp. These are group schemes
of height-one, so the map given by the Lie functor Aut(H) → Aut(Lie(H)) is
injective. In fact, it will be an isomorphism if we restrict to maps of p-Lie algebras
(see [Mum70, Section 14]).

The group scheme H is of rank p, so if p > 4 we get ord(ω) = ord(ω|H) by
rigidity ([KM85, Corollary 2.7.3]). If p = 3 and k = 2, we know that ω will act on
Lie(E) as involution. If d = 4 the same argument applies to ω2.

If p = 2 and k = 3 we have H = α2 since j(E) = 0. If ω induces the identity
on H, the associated trace map trω = Id+ω + ω2 would give multiplication by 3,
which is an isomorphisms on H. But we know that trω is the zero map on E (see
Lemma 6.5 below).

To sum up this discussion, we get that ord(ΘX/C) = l where d = lpn with l
prime to p. Now it easy to calculate the invariants. Denote by ε : C → X the zero
section of X. We have L = Lie(X) = ε∗ΘX/C , and since f∗ Lie(X) ' ΘX/C it
follows that

ord(Lie(X)) = ord(ΘX/C).

The statement about the cohomology of Lie(X) follows, since it is a line bundle of
degree zero and therefore

h1(X, Lie(X)) = h0(X, Lie(X)).

However, the last term is not zero if and only if Lie(X) is trivial.
To compute h1(X, ΘX) we treat both sumands separately. We have ΘX/C '

f∗R1f∗OX ' Lie(X). By the projection formula and the Leray spectral sequence
we get

0 → H1(C,L ) → H1(X, ΘX/C) → H0(C,R1f∗f
∗L︸ ︷︷ ︸

'L⊗2

) → 0.

Thus we get:

h1(X, ΘX/C) =


0 if l > 2
1 if l = 2
0 if l = 1

For h1(X, f∗ΘC) we obtain similarly:

0 → H1(C,ΘC) → H1(X, f∗ΘC) → H0(C,L ⊗ΘC) → 0

Because ΘC ' OC we find h1(X, f∗ΘC) = 2 if L is trivial and h1(X, f∗ΘC) = 1
otherwise.

This proves the statement about h1(X, ΘX). The remaining cohomology groups
are calculated easily using duality. �
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6.1. The versal families. Let X = (E × F )/G over k be a Jacobian bielliptic
surface. First, we to study the deformation functor J acX/C .

By Proposition 3.2 we know the structure of Jacobian deformations of X. They
will be of the form (E × F)/Γ. Here, E is a deformation of E extending the auto-
morphism ω, and we are going to denote the deformation functor of such pairs by
(E,ω). Likewise, F is a deformation of F with a torsion point lifting the point of F
which appears in the definition of the action of Γ, and we denote the deformation
functor of such pairs by (F, c).

The functor J acX/C is isomorphic to the product of the deformation functors

(E,ω)× (F, c).

To write down a versal family for J acX/C , we treat the problem separately for
both factors.

6.1.1. Deforming elliptic curves with automorphisms. Let (Euniv, ω) → Spec(R) be
the universal deformation of E along with its automorphism ω. This functor is
indeed pro-representable since if a lifting of ω exists for a given deformation of E,
then it is unique.

If ord(ω) = 2, then ω is the involution, which obviously extends to any deforma-
tion of E. Hence in that case R = W [[j]].

If ord(ω) > 2 then the j-invariant of E is either 0 or 1728. If the order is prime
to p, there are no obstruction against lifting (E,ω), thus R = W .

We treat the remaining cases. First, assume p = 2 and d = ord(ω) = 4. We know
from [JLR09, Lemma 1.1] that there is no elliptic curve over W , with j-invariant
1728 and good reduction. This means we have to pass to a ramified extension of
W . We will work over R = W [i] where i is a primitive forth root of unity. The
following curve E2 is taken from [JLR09, §2.A]

y2 + (−i + 1)xy − iy = x3 − ix2.

It has j = 1728 and Discriminant ∆ = 11− 2i, and is therefore of good reduction.
For p = 3 and d = 3, again by [JLR09], there will be no elliptic curve over W

with j-invariant 0 and good reduction. So let R = W [π], where π2 = 3. Consider
the elliptic curve E3 given by the Weierstraß equation

y2 = x3 + πx2 + x,

whose j-invariant is 0 and whose discriminant is ∆ = −16. In particular, it has
good reduction.

In both cases (p = 2 or 3), the curve Ep has an automorphism of order four or
three respectively, since on the generic fibre, automorphisms are given by the action
of certain roots of unity, and we have chosen the baserings in such a way, that they
contain the necessary roots. An automorphism of the generic fibre extends to the
entire family, and its order will not change after passing to the reduction, as can
be seen by considering an étale torsion subscheme of sufficiently high order.

We claim that the elliptic curves over the rings constructed above are the uni-
versal families for the deformation problem (E,ω). This follows from the fact that
the respective base rings are the smallest possible extensions of W over which the
deformation problem can be solved, and from the fact that an elliptic curve over a
strictly henselian ring is determind by its j-invariant.

6.1.2. Deforming elliptic curves with torsion points. Now we treat the second fac-
tor. If p does not divide d, then a d-torsion point lifts uniquely to any deformation
of F . Therefore (F, c) is pro-represented by W [[j]].

Assume now, that p does divide d. By the above, we can assume d = pn. Since
F is ordinary, we can use the theory of Serre-Tate local moduli. For the special case
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of ordinary elliptic curves, see [KM85, 8.9]. By this theory, we can represent the
deformation functor of F by a pair

Funiv → Spec(W [[q − 1]])

satisfying the following property: For a complete local W [[q−1]]-algebra Λ, consider
the pullback

F = Funiv ⊗W [[q−1]] Λ.

By Z[q, q−1] → W [[q − 1] → Λ we make Λ into a Z[q, q−1]-algebra. There exists a
universal group scheme T over Z[q, q−1] defined in [KM85, 8.7], such that

F [p∞] ' T [p∞]⊗Z[q,q−1] Λ.

The explicit description of T in [KM85, 8.7] implies that the sequence

(6.1) 0 → µpn → T [pn]⊗ Λ → Z/pnZ → 0

is split if and only if the image of q in Λ has a pn-th root. However, (6.1) is split if
and only if c lifts to F .

We conclude that W [[q − 1]][ pn√q] is a versal hull of the functor (F, c).

6.2. Proposition. The functor J acX/C has R for a versal hull, where R is given
in the table below:

p = 2 p = 3 p > 3
k = 2 W [[jE ]]⊗W [[q − 1]][ 2

√
q] W [[jE ]]⊗W [[jF ]] W [[jE ]]⊗W [[jF ]]

k = 3 W [[jE ]]⊗W W [π]⊗W [[q − 1]][ 3
√

q] W ⊗W [[jF ]]
k = 4 W [i]⊗W [[q − 1]][ 4

√
q] W ⊗W [[jF ]] W ⊗W [[jF ]]

k = 6 W ⊗W [[q − 1]][ 2
√

q] W [π]⊗W [[q − 1]][ 3
√

q] W ⊗W [[jF ]]

It is easy to read off and interpret the dimension of the tangent space of the
deformation functor. For example in the case where p = 3 and d = 3 we have
dim(Hom(W [π]⊗W [ 3

√
jE ], k[ε])) = 3. The parameter jF gives one dimension, and

the rest is due to relations, coming from obstructions. As explained before, we have
h1(X, ΘX) = 4 in this case, so there still is one dimension missing.

To account for this missing dimension, we have to study all deformations of X,
not just the Jacobian ones. This is settled by Theorem 4.3. Observe that in all the
cases, we have

h1(X, ΘX)− dim(J acX/C(k[ε])) = h1(C,Lie(X)).

Therefore dim(F ib(k[ε])) = h1(X, ΘX), and its makes sense to ask if the absolute
deformation functor of X is isomorphic to F ibX/C . In the next section, we will see
that this is indeed the case.

6.2. Classification of deformations. The most important step to classify defor-
mations of bielliptic surfaces is to show that for a bielliptic surface X/C over k the
functors F ibX/C and Def X are isomorphic.

Denote by J → C the Jacobian of X → C. If d is not a power of p, the claim
follows already, since in that case J acJ/C is unobstructed, and has the right tangent
dimension. Hence we get a chain of isomorphisms

J acX/C ' F ibX/C ' Def X .

In the case where d is a power of p, we have to work with the étale covering of
X. This is more difficult than in the Kodaira dimension one case, because the étale
cover of the reduction is an elliptic abelian surface and not every deformation of
the covering admits a fibration.

To understand the deformation theory of abelian surfaces, we use p-divisible
groups. For the readers convenience, we repeat some basic definitions and facts:
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Let p be a prime number, and let S be a scheme. A sheaf of groups for the fppf-
topology is called a p-divisible group, if G is p-divisible and p-primary, i.e.

G = lim−→G[pn]

and the groups G[pn] are finite flat group scheme over S (see [Gro74] where p-
divisible groups go by the name “Barsotti-Tate groups”). The main examples,
and those which we are in fact interested in, are p-divisible groups associated with
abelian schemes. For an abelian S-scheme A, we set

A[p∞] = lim−→A[pn].

The deformation theory of abelian schemes is controlled by p-divisible groups.
To be precise, let R be a ring in which pN = 0. For a nilpotent ideal I ⊂ R we
define the category T of triples:

(A,G, ε)

where A is an abelian scheme over R/I, G is a p-divisible group over R and ε an
isomorphisms G ⊗R R/I ' A[p∞]. Now we have the theorem of Serre and Tate:

6.3. Theorem (Theorem 1.2.1 [Kat81]). There is an equivalence between T and
the category of abelian schemes over R given by

A 7→ (A⊗R R/I,A[p∞], natural ε).

We will use the following statement, to understand the lifting behavior of mor-
phisms of the latter:

6.4. Lemma (Lemma 1.1.3 [Kat81]). Let G and H be p-divisible groups over R.
Assume Iν+1 = 0. Let G and H denote their restrictions to Spec(R/I). Then the
following holds:

(i) The groups HomR(G,H) and HomR/I(G, H) have no p-torsion.
(ii) The reduction map HomR(G,H) → HomR/I(G, H) is injective.
(iii) For any homomorphism f : G → H there exists a unique homomorphism

φν lifting [pν ] ◦ f .
(iv) In order for f to lift to an homomorphism f : G → H, it is necessary and

sufficient for the homomorphism φν to annihilate G[pν ].

In the course of the proof, we will use the following lemma:

6.5. Lemma. Let E be an elliptic scheme over a base scheme S. Let Ω be an
automorphism of E of order d. We consider the trace map:

trΩ = Id+Ω + · · ·+ Ωd−1.

Then trΩ gives the zero map on E.

Proof. We can prove the statement fibrewise. So assume that S it the spectrum of
a field. Now for any S-scheme T , and a T -valued point x ∈ ET (T ) we find that

trΩ(x) = trΩ(Ω(x)).

In other words: The orbits of Ω are contained in the fibres of trΩ. This means in
particular, that trΩ factors over the quotient scheme E/(Z/dZ), where the action
is given by Ω. However, since Ω fixes the zero-section, this quotient is isomorphic
to P1

S .
Now the conclusion follows, because there is no non-constant map P1

S → E . �

6.6. Proposition. Let X be a Jacobian bielliptic surface over k with d = pn. De-
note by f : X → C the smooth elliptic fibration. Then f extends to any deformation
X of X over Λ ∈ Alg.
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Proof. As in the case of Kodaira dimension one, we start with the étale cover
A = E × F of X. Again, we get a diagram

A

��

// A

��
X // X

where the right hand column is the unique lifting of the left. By [MFK94, Theorem
6.14] we can give A a structure of an abelian scheme, extending the group structure
on A. Now the strategy is as follows: First, we show that A has an automorphism
Ω comming from ω. Then we study the action of Ω on the p-divisible group A[p∞],
and use the trace map defined by Ω to lift the projection E[p∞]×F [p∞] → F [p∞].
This lifting will descends to the desired lifting of the fibration f on X.

The covering A → X is Galois with a group Γ isomorphic to Gal(A/X). Denote
by σ a generator of Γ. We study its action on A: Set c = σ(0) ∈ A(Spec(Λ)) and
denote by t−c the morphisms given by translation with −c. We set

Ω = σ ◦ t−c and Ω′ = t−c ◦ σ.

Both maps fix the zero section of A, and are therefore group automorphisms of A.
Furthermore, they lift the automorphism Id×ω of E × F , which implies Ω = Ω′

since liftings of automorphisms are unique.
It follows now, that Ω and tc commute, and since σ and Ω are of order d, we get

that c is torsion point of order d, lifting the action of Γ by translation on F .
To proceed with the proof, we pass to the category of p-divisible groups, as

explained in Theorem 6.3.
Our aim is to lift the second projection pr2 : E[p∞]×F [p∞] → F [p∞]. We know

there exists some integer N such that there exists a unique lift φN of [N ] ◦ pr2
(Lemma 6.4). We compare φN with the trace trΩ defined by Ω. The restriction trΩ
of trΩ to A[p∞] gives the map

[d] ◦ pr2 : A[p∞] → F [p∞] = Im(trΩ),

because trΩ gives multiplication with [d] on the factor F [p∞] and the zero map on
the factor E[p∞] (see Lemma 6.5). Now, we get that [d] ◦ φN is a lift of [N ] ◦ trΩ.
Since lifts of endomorphisms are unique, it follows

[d] ◦ φN = [N ] ◦ trΩ .

Factoring out by A[N ], we see that trΩ is a lift of [d] ◦ [pr2]. It remains to show
that A[d] lies in the kernel of trΩ.

To see this, we consider the exact sequence of finite flat group schemes

0 → A[d]0 → A[d] → A[d]et → 0.

We first show trΩ(A[d]0) = 0. Again we have an exact sequence

0 → A[d]mult → A[d]0 → A[d]bi → 0.

The outer groups denote the multiplicative part and the biinfinitesimal part re-
spectively. The category of multiplicative groups schemes is dual to the category
of étale group schemes via Cartier duality - thus endomorphisms lift uniquely, and
we get trΩ(A[d]mult) = 0. Now, we consider the sequence of p-divisible groups

0 → A[p∞]mult → A[p∞]0 → A[p∞]bi → 0.

Since Ω maps A[p∞]mult into itself, we get an induced action of Ω on A[p∞]bi, and
in particular, trΩ descends to A[p∞]bi. If this group is not trivial, it is a lift of
E[p∞] on which trΩ is zero. Again by uniqueness of lifts, we get trΩ(A[d]bi) = 0.
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We have seen that trΩ(A[d]0) = 0, and it remains to show trΩ(A[k]et) = 0.
However, this is clear, since we deal with étale group schemes. We conclude that
pr2 extends to X . �

So far, we have treated only Jacobian bielliptic surfaces. But the non-Jacobian
cases are mostly trivial. Consulting the table of bielliptic surfaces in [BM77], we see
that the Tate-Šafarevič group is trivial if the associated Jacobian has obstructed
deformations, except in one case in charactertic two.

To construct this surface, let E and F be ordinary elliptic curves over k with
p = 2. We set A = (E × F )/µ2, where µ2 is the subgroup scheme embedded
diagonally into

(E × F )[2]0 ' µ2 × µ2.

The quotient A is an abelian surface which does not split into a product.
Let c be a non trivial 2-torsion point of F . The action on E × F , given by

(x, y) 7→ (x+c,−y), commutes with the diagonal action of µ2 and thereby descends
to a Z/2Z action on A. The bielliptic surface X we are interested in is now given
by A/(Z/2Z). The Jacobian of X is clearly J = (E × F )/(Z/2Z).

Now let X be a deformation of X. Once more we have a diagram:

A

��

// A

��
X // X

We claim that A admits a lifting of the elliptic fibration f : A → F/µ2: We have
an exact sequence

(6.2) 0 → A[p∞]tor → A[p∞] → A[p∞]et → 0.

The morphism A[p∞]et → F [p∞]et induced by f lifts uniquely to

ϕ : A[p∞]et → F [p∞]et,

since we are dealing with étale group schemes. Denote by B the p-divisible group
obtained by pushout of (6.2) along ϕ. We still have A[p∞]tor ⊂ B and inside
A[p∞]tor we have the kernel of the unique lift of Ator → F [p∞]tor. Dividing out B
by that kernel we obtain a lifting of f .

As in the proof of Theorem 6.6, we see that f descends to X . Therefore X is
elliptic. To sum up, we have the following theorem:

6.7. Theorem. Every deformation X of a bielliptic surface X induces a lifting of
the elliptic fibration X → C = Alb(X).

Next, we show that a versal deformation of a bielliptic surface is algebraizable.

6.8. Proposition. Let X be a bielliptic surface over k. Denote by X vers → Spf(R)
a formal versal family of Def X . Then there exists a projective scheme X over R,
such that X vers is the completion of X at the special fibre.

Proof. For an arbitrary deformation X of X, denote by A → X the unique lifting
of the abelian covering A → X. In the proof of Proposition 6.6 we saw that the
abelian scheme A has an automorphism Ω lifting the automorphism ω×Id of E×F .

The automorphism of X , obtained from Ω by descent, will again be denoted by
Ω. Now Ω is a C-automorphism of X ; i.e. its action is confined to the fibres of the
fibration.

We claim that the fixed locus of Ω is flat over C: Every closed point x ∈ C has
an étale neighborhood U → C, such that the the pullback

XU = X ×C U
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can be given the structure of an abelian scheme, in such a way that the base change
of Ω to XU becomes a group automorphism. We consider the endomorphism Ω− Id
of XU . It is a surjective map of abelian schemes, and therefore flat by ([MFK94,
Lemma 6.12]). In particular its kernel, i.e the fix locus of Ω, is flat over U .

Thus we have found a relative Cartier divisor of X → C. Its degree can be
computed on the reduction. It equals the order of the subgroup scheme of E fixed
by ω. In particular it is positive, which means that Z is a relatively ample divisor
for X → C.

Now denote by X vers → Spf(R) a versal family of F ibX/C . It is a formal scheme
over the hull of the deformation functor F ibX/C , therefore admitting an elliptic
fibration F : X vers → C lifting X → C. Denote by m the maximal ideal of R , and
set Xn = X vers ⊗R R/mn+1.

The construction of Z gives rise to a compatible system of relatively ample
line bundles OXn(Zn). Tensoring with the line bundle coming from the divisor
of a fibre of X vers → C, we obtain a system of ample line bundles Hn. Thus
by Grothendieck’s algebraization theorem [Ill05, Theorem 4.10], we conclude that
X vers is the completion of some projective scheme X vers over Spec(R). �

The above proposition helps us to answer another natural question: X is called
bielliptic because it has two transversal elliptic fibrations: The smooth one, denoted
by f , coming from the projection E×F → F and a second one, denoted by g, with
base curve P1

k coming from E×F → E. We saw that the first fibration is preserved
under deformation, but what about the second one?

6.9. Proposition. Let X be a bielliptic fibration, then every deformation X of X
extends both elliptic fibration.

Proof. We are going to show that the versal deformation X vers → Spf(R) admits
an extension of g, then the claim follows by versality.

Denote by K the fraction field of R. We can use surface theory to analyze the
generic fibre XK of the algebraization X of X vers. Denote by L = OX (Z) the
line bundle associated to the divisor Z, constructed in the proof of Proposition 6.8.
The canonical bundle of XK has self-intersection number 0. It follows that the
line bundle L ⊗m

K , gives rise to an elliptic fibration g′ : XK → P1
K , if we choose m

sufficiently big [Băd01, Theorem 7.11].
Since X is proper and normal, we can extend g′ to a rational map g′ : X → P1

R

which is defined on a non-empty open subset intersecting the special fibre. Now,
there are sections s1, s2 : Spec(R) → P1

R whose associated closed subschemes are
disjoint and who do lie inside the image of g′. Taking the closures of the inverse
images of those sections under g′, we get two divisors G1 and G2 in X who have
disjoint specializations on a non empty open subset of the special fibre (namely the
locus where g′ is defined).

We claim that their reductions G1 and G2 are irreducible (and hence disjoint):
The group of divisors of X modulo numerical equivalence is generated by two classes
F and G, where F is a fibre class of f and G is one of g. The intersection numbers
are

F · F = 0, F ·G > 0, G ·G = 0.

In particular, there are no effective divisors on X with negative self-intersection.
It follows that the specialization of a curve of canonical type is again of canonical
type. However, every curve of canonical type on X is irreducible, hence the claim
follows.
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Considering the global sections of L ⊗m associated to the effective divisors G1

and G2, we find that L ⊗m is globally generated. It follows that the map given by
L ⊗m is in fact a morphism, lifting g. �

We illustrate the theorem by looking at a special case: Let k be of characteristic
three, and let X denote the Jacobian bielliptic surface of index d = 3 over k. What
does the fibre Xη of the versal family of X over the generic point of the base look
like? The smooth fibration with elliptic base curve does not have a section. The
three sections which appear when we basechange with the algebraic closure of η do
not descend to Xη. Instead, we have a multi-section of degree three.

There is an explicit construction of a bielliptic surface with d = 3 over Q, which
shows the same behaviour. It was given in [BS03] as a counterexamples to the
Hasse principle which cannot be explained by the Manin obstruction.
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