On the padic local invariant cycle theorem
Yitao Wu (Heidelberg)
What 


When 
Jan 17, 2013 from 03:15 pm to 04:15 pm 
Where  Mainz, 05432 (Hilbertraum) 
Add event to calendar 
vCal iCal 
Abstract: This is a joint work with Matthias Flach. The aim is to construct a padic analogue of the local invariant cycle theorem for regular arithmetic schemes. We construct the specialization map from the rigid cohomology of the geometric special fiber to $D_{crys}$ of the padic etale cohomology of the geometric generic fiber of a proper flat and generically smooth scheme over the ring of integers of a local field. The construction is via descent from the semistable reduction case, and we can prove the morphism is an isomorphism in slope [0,1) part. We outline a possible approach to the proof in slope [0,1) part in the general regular case using the trace maps recently constructed by Berthelot, Esnault and Ruelling.