Personal tools
You are here: Home Events The calculus of multivectors on noncommutative jet spaces.

The calculus of multivectors on noncommutative jet spaces.

— filed under:

Arthemy Kiselev (Groningen)

  • SFB-Kolloquium
When Nov 30, 2017
from 03:30 pm to 04:30 pm
Where Mainz, 05-432 (Hilbertraum)
Add event to calendar vCal

The Leibniz rule for derivations is invariant under cyclic permutations of co-multiples within the arguments of derivations. We explore the implications of this principle: in effect, we construct a class of noncommutative bundles in which the sheaves of algebras of walks along a tesselated affine manifold form the base, whereas the fibres are free associative algebras or, at a later stage, such algebras quotients over the linear relation of equivalence under cyclic shifts. The calculus of variations is developed on the infinite jet spaces over such noncommutative bundles.

In the frames of such field-theoretic extension of the Kontsevich formal noncommutative symplectic (super)geometry, we prove the main properties of the Batalin–Vilkovisky Laplacian and Schouten bracket. We show as by-product that the structures which arise in the classical variational Poisson geometry of infinite-dimensional integrable systems do actually not refer to the graded commutativity assumption.